Question 1

Calculate the concentration of each of the following <u>underlined</u> solutions given that:

- a) 25 mL of a solution of $\underline{\text{HNO}}_3$ reacts exactly with 20.4 mL of 0.20 mol L⁻¹ Na_2CO_3
- b) 13.4 mL of a solution of KOH reacts exactly with 10 mL of 0.05 mol L⁻¹ H₂SO₄
- c) 16.4 mL of a solution of H_2SO_4 reacts exactly with 20 mL of 0.04 mol L⁻¹ Na₂CO₃
- d) 9.8 mL of a solution of HBr reacts exactly with 10 mL of 0.25 mol L⁻¹ NaOH
- e) 13.8 mL of a solution of NaOH reacts exactly with 20 mL of 0.15 mol L⁻¹ HNO₃

Question 2

Mr. Yung used standard solution of 0.132 molL^{-1} sodium carbonate (Na₂CO₃) titrated against with 20.0 mL of unknown HCl solution. The following table is experimental result.

Trial	#1	#2	#3	#4
Titre (mL)	23.42	22.56	22.55	22.56

The equation between sodium carbonate and nitric acid is shown below

$$Na_2CO_3 + 2 HNO_3 \rightarrow H_2O + 2 NaNO_3 + CO_2$$

Question 3

Mr. Macann conducted the same experiment but has a different result. Calculate the concentration from this data.

Trial	#1	#2	#3	#4
Titre (mL)	22.16	21.90	22.03	20.89