Chemistry 2.1 Quantitative Analysis

Chemical calculations 1

Systeme International d'Unites

- All measurements made in science use the same set of units for convenience.
- Here are a few examples that are commonly used in chemistry

Measurement	symbol	Base unit name	Base unit symbol
Mass	\boldsymbol{m}	Grams	\boldsymbol{g}
Time	\boldsymbol{t}	Seconds	\boldsymbol{s}
Volume	\boldsymbol{V}	Litres	\boldsymbol{L}
Amount	\boldsymbol{n}	Mole	$\boldsymbol{m o l}$
Energy	E(or $\boldsymbol{H})$	Joules	\boldsymbol{J}

Prefix

Prefix	Symbol	Meaning
Tera-	\boldsymbol{T}	10^{12}
Giga	\boldsymbol{G}	10^{9}
Mega	\boldsymbol{M}	10^{6}
Kilo	\boldsymbol{k}	10^{3}
Deci-	\boldsymbol{d}	10^{-1}
Centi-	\boldsymbol{c}	10^{-2}
Milli-	\boldsymbol{m}	10^{-3}
Micro	$\boldsymbol{\mu}$	10^{-6}
Nano	\boldsymbol{n}	10^{-9}
Pico	\boldsymbol{p}	10^{-12}

Mole

- 1 dozen means 12
- 1 mole means 6×10^{23}

Example
In one mole of NaCl
There are $6 \times 10^{23} \mathrm{Na}+$ ions
There are $6 \times 10^{23} \mathrm{Cl}$ ions
There are 1.2×10^{24} ions

The Avogadro's Number $\left(\mathrm{N}_{\mathrm{A}}\right)$

- A mole always contains $6(.02) \times 10^{23}$ particles.
- This is called the Avogadro's number
- This number will ALWAYS be given even in university level.

How many moles of Hydrogen atoms in 2400000000 molecules of water?
© For the geeks in the class ©
The currently accepted value of N_{A} is
6.0221367×10^{23}

Molar Mass

Mass per Amount Grams per mole (gmol^{-1})

The Molar Mass (M)

- The molar mass is the average mass of one mole of an element, ion or compound.
- It has a unit grams per mole $\mathrm{g} \mathrm{mol}^{-1}$
- The molar mass of a compound is the SUM of all the molar mass in the chemical formula

Example

- The molar mass for Ethanoic Acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
$2 \times$ Carbon $=2 \times 12.0=24.0 \mathrm{gmol}^{-1}$
$4 \times$ Hydrogen $=4 \times 1.0=4.0 \mathrm{gmol}^{-1}$
$2 \times$ oxygen $=2 \times 16.0=32.0 \mathrm{gmol}^{-1}$

Molar Mass for $\mathrm{CH}_{3} \mathrm{COOH}=\underline{60.0 \mathrm{gmol}^{-1}}$

Molar mass calculation

$$
\frac{m}{n}=M=g m o l^{-1}=\frac{g}{m o l}
$$

Example

- What is the amount of sodium ion in 45.3 g of sodium carbonate.
Calculate the molar mass of sodium carbonate

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}=23 \times 2+12+16 \times 3=106 \mathrm{gmol}^{-1}
$$

Calculate the mole of sodium carbonate

$$
45.3 \mathrm{~g} \div 106 \mathrm{gmol}^{-1}=0.427 \ldots \mathrm{~mol}
$$

Ratio of sodium ion and sodium carbonate

$$
\mathrm{Na}^{+}: \mathrm{Na}_{2} \mathrm{CO}_{3}=2: 1
$$

Apply the ratio to determine the mole of Na^{+}

$$
0.427 \ldots \times 2=\underline{\underline{0.855 \mathrm{~mol}}(3 \mathrm{~s} . \mathrm{f} .)}
$$

Exercise

- Calculate the amount (in mole) of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ of 25.7 g of carbon dioxide.
- Calculate the mass of 0.235 mol of sodium chloride (NaCl)
- Calculate the amount (in mole) of iodine atoms in 87.3 g iodine $\left(\mathrm{I}_{2}\right)$ solid.

Concentration

Amount per volume
Mole per Litre (molL-1)

Concentration (c)

- Concentration is an expression of the amount of particle per volume space
- Amount is measured in mole
- Volume is measured in Litre
- Therefore the unit for concentration is mol per litre (molL-1)

Concentration Calculation

$$
\frac{n}{V}=c=m o l L^{-1}=\frac{m o l}{L}
$$

Example

- What is the concentration when 9.8 g of sodium chloride dissolved in 500 mL of water
Calculate the molar mass of sodium chloride

$$
23.0+35.5=58.5 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Calculate the amount (in mole) of sodium chloride

$$
9.8 \mathrm{~g} \div 58.5 \mathrm{~g} \mathrm{~mol}^{-1}=0.168 \ldots \mathrm{~mol}
$$

Calculate the volume (in litre)
$500 \mathrm{~mL} \div 1000 \mathrm{mLL}^{-1}=0.500 \mathrm{~L}$
Calculate the concentration

$$
0.168 \ldots \mathrm{~mol} \div 0.500 \mathrm{~L}=0.335 \mathrm{molL}^{-1}
$$

Exercise

- What is the concentration when 52.3 g of sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ dissolved in 250 mL of water?
- What is the mass of Zinc Chloride $\left(\mathrm{ZnCl}_{2}\right)$ needed to create 40 mL of $0.1 \mathrm{molL}^{-1}$ solution?

