Chemistry 2.1 Quantitative Analysis

Chemical Calculation 2

Stoichiometry

- Stoichiometry is the determination of the numerical ratio of the mole relationships in a chemical reaction.
- Stoichiometry follows the basic principle of "matter cannot be created or destroy"
- Using Stoichiometry, chemist can accurately estimate the amount of reactant required or the amount of product forms.

Example

- For reaction

$$
4 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})}->2 \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}
$$

The stoichiometry (ratio) between

$$
\begin{aligned}
& \mathrm{Al}: \mathrm{O}_{2}=4: 3 \\
& \mathrm{Al}: \mathrm{Al}_{2} \mathrm{O}_{3}=2: 1 \\
& \mathrm{O}_{2}: \mathrm{Al}_{2} \mathrm{O}_{3}=3: 2
\end{aligned}
$$

Calculation example 1

Calculate the mass of water that will react completely with 4.0 g of pure calcium metal according to the following equation

$$
\mathrm{Ca}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}->\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}+\mathrm{H}_{2(\mathrm{~g})}
$$

Step 1: calculate the mole of Ca

$$
\mathrm{g} \div \mathrm{gmol}^{-1}=\mathrm{mol}
$$

Step 2: determine the ratio between

$$
\mathrm{Ca}: \mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{Ca}: \mathrm{H}_{2} \mathrm{O}=1: 2
$$

Step 3: determine the mole of $\mathrm{H}_{2} \mathrm{O}$ by applying the ratio
$2 \times 0.1 \mathrm{~mol}=0.2 \mathrm{~mol}$
Step 4: calculate the mass of $\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{mol}^{\mathrm{g} \mathrm{gmol}}-1=\mathrm{g} \quad 0.2 \mathrm{~mol}^{-1} 18.0 \mathrm{gmol}^{-1}=\underline{\underline{3.6 ~ g}}
$$

Calculation example 2

Calculate the mass of CO_{2} formed when 10.0 g of ethane is fully combusted

$$
\mathrm{C}_{2} \mathrm{H}_{6}+31 / 2 \mathrm{O}_{2}->2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

Step 1: calculate the mole of $\mathrm{C}_{2} \mathrm{H}_{6}$

$$
\mathrm{g} \div \mathrm{gmol}^{-1}=\mathrm{mol} \quad 10.0 \mathrm{~g} \div 30.0 \mathrm{gmol}^{-1}=0.333 \mathrm{~mol}
$$

Step 2: determine the ratio between

$$
\mathrm{C}_{2} \mathrm{H}_{6}: \mathrm{CO}_{2}
$$

$$
\mathrm{C}_{2} \mathrm{H}_{6}: \mathrm{CO}_{2}=1: 2
$$

Step 3: determine the mole of
CO_{2} by applying the ratio
$2 \times 0.33 \mathrm{~mol}=0.667 \mathrm{~mol}$
Step 4: calculate the mass of CO_{2}

$$
\mathrm{mol}_{\mathrm{g} \mathrm{gol}}-1=\mathrm{g} \quad 0.667 \mathrm{~mol}^{2} 44 \mathrm{gmol}^{-1}=\underline{29.3 \mathrm{~g}}
$$

Calculation example 3

Calculate the volume of $0.1 \mathrm{molL}^{-1}$ of HCl is needed to react with 20.0 mL of $0.0986 \mathrm{molL}^{-1}$ of NaOH $\mathrm{HCl}+\mathrm{NaOH}->\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Step 1: calculate the mole of NaOH

$$
\mathrm{molL}^{-1} \times \mathrm{L}=\mathrm{mol}
$$

Step 2: determine the ratio between
$\mathrm{HCl}: \mathrm{NaOH}$
Step 3: determine the mole of HCl by applying the ratio
Step 4: calculate the volume

$$
\mathrm{mol} \div \mathrm{molL}^{-1}=\mathrm{L}
$$

$0.0986 \mathrm{molL}^{-1} \times 0.02 \mathrm{~L}=$
$1.972 \times 10^{-3} \mathrm{~mol}$
$\mathrm{HCl}: \mathrm{NaOH}=1: 1$
$1.972 \times 10^{-3} \mathrm{~mol}$
$1.972 \times 10^{-3} \mathrm{~mol} \div 0.1 \mathrm{molL}^{-1}$
$=\underline{0.01972 \mathrm{~L}=19.7 \mathrm{~mL} \text { (3s.f. }) ~}$

Calculation example 4

Calculate the concentration of HCl when 20.7 mL of 0.103 molL^{-1} of NaOH is needed to react with 20.0 mL of HCl .

$$
\mathrm{HCl}+\mathrm{NaOH}->\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

Step 1: calculate the mole of NaOH

$$
\mathrm{molL}^{-1} \times \mathrm{L}=\mathrm{mol}
$$

Step 2: determine the ratio between
$\mathrm{HCl}: \mathrm{NaOH}$
Step 3: determine the mole of HCl by applying the ratio
Step 4: calculate the volume

$$
\mathrm{mol} \div \mathrm{L}=\mathrm{molL}^{-1}
$$

$0.103 \mathrm{molL}^{-1} \times 0.0207 \mathrm{~L}=$
$2.1321 \times 10^{-3} \mathrm{~mol}$
$\mathrm{HCl}: \mathrm{NaOH}=1: 1$
$2.1321 \times 10^{-3} \mathrm{~mol}$
$2.1321 \times 10^{-3} \mathrm{~mol} \div 0.02 \mathrm{~L}=$ $0.107 \mathrm{moll}^{-1}$ (3s.f.)

