Assessment schedule NZIC 2011 Chemistry 2.4 (AS90308)

While the writers of this assessment have worked to compile a resource that meets NCEA requirements, it has no official status and teachers may wish to adjust questions and the assessment schedule as they see fit.

	Evidence			Achieved	Merit	Excellence	
ONE	Molecule	Lewis	Diagram	Name of	Any 3 of	2 rows of table correct	All Correct
(a)		Structure	showing shape	shape			
	Cl ₂ O	:ci-o-ci:	CI O—CI	Bent	 2 Lewis structures (PF₃, SiBr₄ or CS₂) correct 2 shapes correct 		
		••			2 shapes confect		AND
	PF ₃	F—P—F F	F F	Trigonal Pyramidal	Diagrams for PF_3 and CS_2 correct	AND	Full discussion linking
	SiBr ₄	Br Br—Si—Br Br Br	Br Br Br Br	Tetrahedral	Describes the number of regions around central atom for one structure.	Links shape to the number and nature of regions of negative charge for one molecules	shape to the number and nature of regions of negative charge.
	CS ₂	s=c=s	s—c—s	Linear	AND		
(b)	between these e		l atom. To minimise the e up a tetrahedral shape. S rahedral.				
	minimise the re	pulsions between thes	n pairs (clouds) on the S e electron pairs they take ling (or lone pairs) the m	e up a tetrahedral	Recognises that shape depends on repulsion between electron clouds. For any of the 3 molecules.		

	Evidence	Achieved	Merit	Excellence
TWO (a) (b)	Si-F Order of electronegativity is $F > N > C > Si$. Since electronegtivity difference between Si and F is the greatest the bond will have greatest polarity. Both CCl ₄ and CHCl ₃ are tetrahedral molecules. They each have 4 electron clouds about the central atom arranged in a tetrahedron (to minimise \bar{e} repulsion and each is a bonding pair). The C–Cl bonds are polar (due to the difference in electronegativity between C & Cl). However, since there are 4 C–Cl bonds the symmetry of the tetrahedral molecule means that the bond dipoles /(polarity of the bonds are cancelled so the molecule is non–polar. CHCl ₃ is also tetrahedral molecule with 4 electron clouds about the central atom arranged in a tetrahedron. However, the electronegativity of H is different from that of Cl so the polarity of the C-H bond is different from that of the C-Cl bonds. This means that even though there is a symmetrical arrangement of the bonds, the polarity of the bonds does not cancel leaving oppositely charged regions in the molecule –	AchievedTwo ofCorrect bondDescription of polar bonds in terms of electronegativity differences between atoms.Description of polar molecules, eg polar molecules contain polar bonds / polar molecules have an uneven spread of charge (non-polar molecules have an even spread of charge) / have + and - end.	Merit Links most polar bond to differences in electronegativity AND Links polarity of molecule to shape OR Symmetrical arrangement of polar bonds.	Excellence Full discussion for both molecules that includes a electronegativity differences and which links polarity of molecule to shape AND considers the symmetry of the arrangement of polar bonds or dipoles for both molecules.
	arrangement of the bonds, the polarity of the bonds does not			inoloculos.

	Evidence		Achieved	Merit	Excellence		
THREE (a)			Type of solid		3 of:		
(4)	-	1	METALLIC		Types of solid all correct	Conductivity correctly linked to	Conductance fully discussed
	, 4	2	MOLECULAR		OR	movement of particles for two solids	with reference to particles, type of solid and the
		3	IONIC		(States that conductance	OR	attractive forces between particles for all solids in the
	2	4	COVALENT NETWORK		needs mobile charged particles		states described.
					OR	Conductivity correctly linked to movement of charged particles in	
(b)	 To conduct an electrical current, a substance needs charged particles that are free to move Solid 3 is an ionic solid made up of a 3-D lattice of positive and negative ions. In the solid state these ions are rigidly held by strong ionic bonds and do not move around. When melted the ions move freely so are able to conduct. Similarly in aqueous solution the ions are free to move so the solution is able to conduct. Solid 1 is a metal is made of a 3-D lattice of ions held in a sea of delocalised valence electrons. These electrons are mobile and so can conduct electricity. When heated, the lattice of ions breaks down but the electrons are still delocalized and able to conduct. In the solid state, solid 2 is composed of discrete molecules held together by weak intermolecular forces. There are no mobile charged particles (all the electrons are locked into bonds) This means that Solid 2 cannot conduct. In molten solid 2 the only particles are neutral molecules so conductance cannot occur. 		Describes ionic bonding OR	solid, molten and aqueous ionic solids.			
(c)			Describes metallic bonding OR describes the bonding in molecular solids (weak intermolecular forces)				

	Evidence	Achieved	Merit	Excellence
FOUR	Both Cl and S are non metals (with similar	Two of:		
(a)	electronegativities) so they form covalent bonds by sharing electrons	Correct description of a	Correctly identifies the type of bonding and links high/low	Reasons for differences fully discussed including
(b)	To melt a substance, the forces of attraction between the particles of a substance must be broken/overcome in order to separate the particles. If the forces of attraction between the particles is strong then more energy (heat) will be needed to	covalent bond OR	melting point to the nature of the attractive forces for one type of solid	relationship between meltng point and attractive forces.
(c)	to break the bonds/overcome the forces and the melting point will be higher. NaCl and MgCl ₂ are both ionic solids. The ionic bonding	OR States criteria required to melt		
	between the ions is very strong. Therefore a large amount of energy / high temperature is needed separate the ions and change the solid to a liquid. SCl ₂ and Cl ₂ are both molecular substances where the molecules are held together by weak intermolecular forces. Therefore much less energy /much lower temperature is needed overcome the weak intermolecular forces and separate the molecules when changing the solid to a liquid.	a substance. OR States that magnesium chloride/sodium chloride is ionic and held together by strong ionic bonds.		
		OR States that SCl_2 and Cl_2 are molecular and held together by intermolecular forces.		

FIVE	(a) (i) Exothermic (ii) Endothermic(iii) Exothermic (iv) Exothermic	Any 3 of: 3 out of 4 exo or endo	Reaction profile correct	All calculations correct
	Enthalpy $\Delta_{\mathbf{r}}\mathbf{H}$ $\mathbf{L}_{12CO_2 + 11H_2O}$ Reaction coordinate (ii) Activation energy is the energy needed to get a reaction started	 Reaction profile represents exothermic reaction but some details missing Definition of <i>E</i>_A Calculation of energy from sucrose 	AND Either (b) (i) correct OR Mass of ethanoic acid correct	
	(iii) 0.248 mol × -5645 kJ mol ⁻¹ = -1400 kJ (b) (i) $n(CH_3COOH) = 1044 \text{ g} / 60 \text{ g mol}^{-1} = 17.37 \text{ mol}$ 1 mol produces 356 kJ 17 37 mol produces 356 × 17.37 = 6184 kJ (ii) 356 kJ produced from 1 mol 3.00 × 10 ⁶ produced from 3 x 10 ⁶ / 356 = 8427 mol $m(CH_3COOH) = n \times M = 8427 \text{ mol} \times 60.1 \text{ g mol}^{-1}$ = 506463 g = 506.5 kg $V(CH_3COOH) = 506.5 \text{ kg} / 1.044 \text{ kg L}^{-1} = 485 \text{ L}$	One step of either calculation in (b) correct		

Achievement	Achievement with Merit	Achievement with Excellence	
4 x A	2 x M + 2 x A	$3 \times E + 1 \times M + 1 \times A \text{ OR } 4E$	