Chemistry 2.4 Structure, bonding and Thermodynamics

Specific heat energy and bond enthalpy

Specific heat (s)

- The specific heat energy ($\mathrm{J} \mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$) of the substance is the energy required to increase one ${ }^{\circ} \mathrm{C}$ in one gram of substance.

- Water is the common substance used to measure heat change
- It has a specific heat energy of
$4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{o}^{-1}$

Example

A laboratory technician adds 43.1 mL of 11.6 $\mathrm{mol} \mathrm{L}^{-1}$ hydrochloric acid to water to form 500 mL of solution. The temperature of the solution rises $2.6^{\circ} \mathrm{C}$.
Calculate the energy change for the reaction, hence calculate the enthalpy of the reaction

$$
\mathrm{c}=4.18 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}
$$

Example cont.

Volume of water is 500 mL
Since the density of water is $1 \mathrm{gmL}^{-1}$
(one gram per mini-litre)
Mass of water $(\mathrm{m})=500 \mathrm{~g}$
Specific heat $(\mathrm{s})=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{o}^{-1}$
Change of temperature $(\mathrm{T})=2.6^{\circ} \mathrm{C}$
$\mathrm{E}=500 \mathrm{~g} \times 4.18 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1} \times 2.6{ }^{\circ} \mathrm{C}=5434 \mathrm{~J}$
$5434 \mathrm{~J}=5.434 \mathrm{~kJ}$

Example cont.

$5.434 \mathrm{~kJ}^{2}$ when 43.1 mL of $11.6 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$ added to water
The amount of HCl is $11.6 \mathrm{molL}^{-1} \times 0.0431 \mathrm{~L}$ $=0.49996 \mathrm{~mol}$ of HCl
The enthalpy is
$5.434 \mathrm{~kJ} \div 0.49996 \mathrm{~mol}^{1}=10.9 \mathrm{kJmol}^{-1}$

Bond energy in calculation

- Chemical reactions involve in
- Breaking bonds in the reactants ($\Delta \mathrm{H}=+$)
- Forming bonds in the products ($\Delta \mathrm{H}=-$)
- Therefore the overall enthalpy change is

$$
\Delta \mathrm{H}=\sum \mathrm{BE}_{(\text {reactants) }}-\sum \mathrm{BE}_{\text {(products) }}
$$

BE = Bond Energy

Overall picture

Endothermic
Exothermic

Example \#1

Enthalpy change for the combustion of hydrogen gas $\mathrm{H}-\mathrm{H}=436.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{O}=\mathrm{O}=498.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{O}-\mathrm{H}=460.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}->2 \mathrm{H}_{2} \mathrm{O}
$$

$\sum \mathrm{BE}_{\text {(reactants) }}=2 \times 436.4 \mathrm{~kJ} \mathrm{~mol}^{-1}+498.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
=1371.5 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$\sum \mathrm{BE}_{\text {(products) }}=4 \times 460.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
=1840.0 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$$
\Delta \mathrm{H}^{\circ}=\sum \mathrm{BE}_{\text {(reactants) }}-\sum \mathrm{BE}_{\text {(products) }}
$$

$$
=1371.5 \mathrm{~kJ} \mathrm{~mol}^{-1}-1840.0 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$$
=-468.5 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

