Chemistry 2.5 Organic Chemistry

Alkane and Alkene reactions

Alkane

- It is chemically unreactive
- As there are no active functional group
- The only organic reaction that it involves is
 - Substitution

Substitution reaction

Reaction substituting hydrogen with halogen in an alkane.

$$H_{H} \stackrel{H}{\longrightarrow} C_{H} + CI-CI \stackrel{hv}{\longrightarrow} H_{H} \stackrel{H}{\longrightarrow} C_{CI} + H-CI$$

- X = halogen
- X_2 can be F_2 , Cl_2 , Br_2 and l_2
- Br₂ is orange solution, when the reaction occurs, Br₂ from orange to colourless
- The reaction carries on until all halogen is used up
- This is a slow reaction and requires UV (sunlight)

Alkene

- Are classified as unsaturated
 Compounds contain C-C double or triple bonds.
- There are two main reactions for alkene
 - Addition reactions
 - Oxidation

Addition reactions

- Addition reactions are reactions in which one small molecule adds to the molecule by breaking of double bond forming a single product.
- Small molecules can be
 - H-H = Hydrogenation
 - X-X = Halogenation
 - H-OH = Hydration (requires H⁺ as catalysis)
 - H-X

X = halogen (group 17). F Cl Br I

Example $H_2C \xrightarrow{CH_2} H_2C \xrightarrow{H_2C} CH_2$ $A \xrightarrow{CH_2} A \xrightarrow{H_2C} CH_2$

- A and T can be the same
 - Hydrogen or Halogen

• Or A can be a hydrogen while T is a halogen or OH

- H-Cl or H-Br or H_2O

Addition of H-X (or H-OH)

 The additional of H-X (or H-OH) to an unsymmetrical alkene such as propene is more complicated because two products are possible.

The Markovnikov's rule

- Hydrogen rich gets richer
 - In an unsymmetrical additional reactions, hydrogen prefer to be added on the carbon which contains more hydrogen forming the **major product**
 - The other possibility will be the minor product

Example of M. rule

Oxidation

- Alkene also undergoes oxidation with oxidant such as KMnO₄ or K₂Cr₂O₇
- The double bond is broken and replaced by two hydroxyl (-OH alcohol) group

Polymerization

- A polymer is made up of thousands of small molecules (called monomers) covalently bonded together.
- This process (of joining together) is called polymerization.
- Two types
 - Additional polymerization
 - Condensation (Yr 13)

Additional polymer

- Additional polymerisation is where reactant monomer molecules link together in a simple chain polymer.
- This process usually requires a catalyst.
- To draw the polymer, it is easier to redraw the alkene in a "H" shape where the double bond is the horizontal line of the "H".

Example

- Polypropylene is a polymer made out of monomer propene.
- Draw three repeating unit of polypropylene
- 1. Draw three propene in "H" shape

2. Break the double bonds and join them together

