Achievement Standard 2.7 - Mark Schedule

Question number	Answer				Achievement	Achievement with Merit	Achievement with Excellence
1 (a)	$\begin{aligned} & \text { i) }+7 \\ & \text { ii) }+6 \\ & \text { iii) }+5 \\ & \text { iv) }+5 \\ & \text { v) }+1 \end{aligned}$				4 correct		
1(b)		Species	Oxidation Number change	Reduction/ oxidation	6 lines correct	All correct	
	i	$\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}$	$0 \rightarrow 2$	Oxidation			
		$\mathrm{Ag}^{+} \rightarrow \mathrm{Ag}$	$1 \rightarrow 0$	Reduction			
	ii	$\mathrm{Fe}^{2+} \boldsymbol{\rightarrow} \mathrm{Fe}^{3+}$	$2 \rightarrow 3$	Oxidation			
		$\mathrm{O}_{2} \rightarrow \mathrm{O}^{2-}$	$0 \rightarrow-2$	Reduction			
	iii	$\mathrm{Sn} \rightarrow \mathrm{Sn}^{2+}$	$0 \rightarrow 2$	Oxidation			
		$\mathrm{H}^{+} \rightarrow \mathrm{H}_{2}$	$1 \rightarrow 0$	Reduction			
	iv	$\mathrm{Al} \rightarrow \mathrm{Al}^{3+}$	$0 \rightarrow 3$	Oxidation			
		$\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}$	$3 \rightarrow 0$	Reduction			

2 (a)		4 correct half equations	2 correct full equations with correct observations	3 correct full equations with correct observations for 2, linked to correct species.
2 (b)	$\begin{aligned} & \begin{array}{ll} \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} & \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \\ & \rightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \end{array} \\ & \underline{\mathrm{H}_{2} \mathrm{O}_{2}} \quad \begin{array}{l} 2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O} \end{array}+5 \mathrm{O}_{2} \\ & \mathrm{MnO}_{4} \rightarrow \mathrm{Mn}^{2+} \text { Purple to colourless } \\ & \mathrm{MnO}_{4} \\ & \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{O}_{2} \quad \text { Liquid to gas } \end{aligned}$			
2 (c)	$\left.\begin{array}{ll}\begin{array}{l}\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \\ \mathrm{Fe}^{2+}\end{array} & \begin{array}{l}\boldsymbol{\rightarrow} \mathrm{Cl}^{-} \\ \boldsymbol{\rightarrow} \mathrm{Fe}^{3+}+\mathrm{e}^{-}\end{array} \\ \mathrm{Cl}_{2}+2 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cl}^{-}+2 \mathrm{Fe}^{3+}\end{array}\right]$ $\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}^{-}$ $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+} \quad$Pale green gas to colourless liquid Pale green to orange			
3 (a)	$$	Correct, but waters and hydrogen ions left in final equation	Correct final equation.	
3 (b)	$\mathrm{Cr}^{3+}+3 \mathrm{e}-\mathrm{Cr}$	Correct		
3 (c)	$6 \mathrm{e}^{-}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}$ $\rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{C}_{2} \underline{H}_{6} \mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{O}$ $\rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$ $2 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+16 \mathrm{H}^{+}+3 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ $\rightarrow 4 \mathrm{Cr}^{3+}+11 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$		Correct half equations	Correct final equation in lowest denominations

4 (a)	$\begin{aligned} & \text { Anode }=(+) \mathrm{ve} \\ & \text { Cathode }=(-) \text { ve } \end{aligned}$	Correct		
4 (b)	To attract the positive chromium cations to it so that they can pick up electrons and become chromium, coating the jewelry. The anode will slowly dissolve replacing the Cr^{3+} ions in solution. So connecting the jewelry here will cause the jewelry to dissolve.	So it will be coated with chromium	To attract the positive chromium ions to it.	Merit plus jewelry will dissolve as an anode.
4 (c)	No As there would be no mobile charge carriers to complete the circuit. There would be no Cr^{3+} ions to be attracted to the jewelry.	No. As there would be no charge carriers	Achieved plus no Cr^{3+} ions	
4 (d)	The anode gets smaller The cathode gets bigger and shinier as it is coated in chromium.	1 observation		
4 (e)	No As the chromium electrode is oxidised to Cr^{3+} ions itself and this replaces the Cr^{3+} that is reduced to Cr at the cathode.	No	Indicates an understanding that the electrode replaces it.	Full explanation including reduction and oxidation
4 (f)	Cathode $\mathrm{Cr}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}$ Reduction Anode $\mathrm{Cr} \rightarrow \mathrm{Cr}^{3+}+3 \mathrm{e}^{-}$ Oxidation	Correct equations, but reduction at Anode and vice versa	Correct	
5 (a)	- In this pH range, maximum HOCl is available to carry out its sanitizing effects. - Because below 6 chlorine is formed, which is toxic to humans.	Identifies optimum range from graph.	Comments on production of toxic Chlorine.	

$5(\mathrm{~b})$	$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}$ $\frac{\mathrm{Fe} \rightarrow \mathrm{Fe}^{3+}+3 \mathrm{e}^{-}}{2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}}$	2 half equations	Fully balanced ionic equation	
$5(\mathrm{c})$	Oxidising agent	Correct		

Sufficiency statement:

ACHIEVED 8 opportunities out of the 14, at achieved or higher.
MERIT
EXCELLENCE Achieved plus 5 opportunities out of the 10 , at merit or higher.
Merit plus 2 opportunities out of the 4 , at excellence.

