<u>Achievement Standard 2.7 – Mark Schedule</u>

Question number			Answer		Achievement	Achievement with Merit	Achievement with Excellence
1 (a)	i) + ii) + iii) + iv) + v) +	6 5 5			4 correct		
1(b)		Species	Oxidation Number change	Reduction/ oxidation Oxidation	6 lines correct	All correct	
	i	Cu → Cu ²⁺	0 → 2	Reduction			
		$Ag^+ \rightarrow Ag$	1 → 0	Oxidation			
	ii	Fe ²⁺ → Fe ³⁺	2 → 3	Reduction			
		$O_2 \rightarrow O^{2-}$	0 → -2				
	iii	Sn → Sn ²⁺	0 → 2	Oxidation			
		$H^+ \rightarrow H_2$	1 → 0	Reduction			
	iv	$Al \rightarrow Al^{3+}$	0 -> 3	Oxidation			
		Fe ³⁺ → Fe	3 → 0	Reduction			

2 (a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 correct half equations	2 correct full equations with correct observations	3 correct full equations with correct observations for 2, linked to correct species.
2 (b)	$MnO_4^- + 8H^+ + 5e^-$ → $Mn^{2+} + 4H_2O$ H_2O_2 → $O_2 + 2H^+ + 2e^-$ $2MnO_4^- + 6H^+ + 5H_2O_2$ → $2Mn^{2+} + 8H_2O + 5O_2$ MnO_4 → Mn^{2+} Purple to colourless H_2O_2 → O_2 Liquid to gas			
2 (c)	$Cl_{2} + 2e^{-} \longrightarrow 2Cl^{-}$ $Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$ $Cl_{2} + 2Fe^{2+} \longrightarrow 2Cl^{-} + 2Fe^{3+}$ $Cl_{2} \longrightarrow Cl^{-}$ $Fe^{2+} \longrightarrow Fe^{3+}$ Pale green gas to colourless liquid Pale green to orange			
3 (a)	$Cr_2O_3 + 6H^+ + 6e^- \rightarrow 2Cr + 3H_2O$ $C + H_2O \rightarrow CO + 2H^+ + 2e^ Cr_2O_3 + 3C \rightarrow 2Cr + 3CO$ $Cr^{3+} + 3e^- \rightarrow Cr$	Correct, but waters and hydrogen ions left in final equation	Correct final equation.	
3 (b)	$Cr^{3+} + 3e- $	Correct		
3 (c)			Correct half equations	Correct final equation in lowest denominations

4 (a)	Anode = (+)ve Cathode = (-)ve	Correct		
4 (b)	To attract the positive chromium cations to it so that they can pick up electrons and become chromium, coating the jewelry.	So it will be coated with chromium	To attract the positive chromium ions to it.	Merit plus jewelry will dissolve as an anode.
	The anode will slowly dissolve replacing the Cr ³⁺ ions in solution. So connecting the jewelry here will cause the jewelry to dissolve.			
4 (c)	No As there would be no mobile charge carriers to complete the circuit. There would be no Cr ³⁺ ions to be attracted to the jewelry.	No. As there would be no charge carriers	Achieved plus no Cr ³⁺ ions	
4 (d)	The anode gets smaller The cathode gets bigger and shinier as it is coated in chromium.	1 observation		
4 (e)	No As the chromium electrode is oxidised to Cr ³⁺ ions itself and this replaces the Cr ³⁺ that is reduced to Cr at the cathode.	No	Indicates an understanding that the electrode replaces it.	Full explanation including reduction and oxidation
4 (f)	Cathode $Cr^{3+} + 3e^{-} \rightarrow Cr$ Reduction Anode $Cr \rightarrow Cr^{3+} + 3e^{-}$ Oxidation	Correct equations, but reduction at Anode and vice versa	Correct	
5 (a)	 In this pH range, maximum HOCl is available to carry out its sanitizing effects. Because below 6 chlorine is formed, which is toxic to humans. 	Identifies optimum range from graph.	Comments on production of toxic Chlorine.	

5 (b)	Cl ₂ + 2e ⁻ \rightarrow 2Cl ⁻ <u>Fe</u> \rightarrow Fe ³⁺ + 3e ⁻ 2Fe + 3Cl ₂ \rightarrow 2FeCl ₃	2 half equations	Fully balanced ionic equation	
5 (c)	Oxidising agent	Correct		

Sufficiency statement:

ACHIEVED 8 opportunities out of the 14, at achieved or higher.

MERIT Achieved plus 5 opportunities out of the 10, at merit or higher.

EXCELLENCE Merit plus 2 opportunities out of the 4, at excellence.