Chemistry 2.7 Redox Chemistry

Species in solution

Ionic solution

- As mentioned in Chemistry 2.4, when a ionic substance dissolves, the ions (cations and anions) will be separated by water molecules
- Once the ions are separated, they act independently as individuals.
- These independent chemicals are called species.

Examples

When copper (II) sulfate CuSO₄ dissolves in water

$$CuSO_4(s) \rightarrow Cu^{2+} + SO_4^{2-}$$

– The species in this solution are Cu^{2+} and SO_4^{2-}

 When potassium permanganate KMnO₄ dissolves in water

$KMnO_4(s) \rightarrow K^+ + MnO_4^-$

- The species in this solution are K⁺ and MnO₄⁻

Spectator ions

- The ions that do not involve in chemical reactions are called spectator ions
- Common spectator ions are
 - Cation K^+ and Na^+
 - Anion $-SO_4^{2-}$ and NO_3^{-}
- The ions that involve in chemical reactions are called **active species**
- Only active species are needed for ½ equations

Examples

- Potassium permanganate KMnO₄
 - Potassium (K⁺) is the spectator species
 - Permanganate (MnO_4^-) is the active species

Copper sulfate CuSO₄

- Sulfate (SO_4^{2-}) is the spectator species
- Copper (Cu²⁺) is the active species
- Sulfuric acid H₂SO₄
 - Sulfate (SO_4^{2-}) is the spectator species
 - Hydrogen ion (H⁺) is the active species