Chemistry 3.2 Molecular Spectroscopy

Infrared Spectroscopy (IR)

Chemical fingerprint

- When a substance is exposed to electromagnetic radiation with a specific energy, the substance is "excited" from the ground state to an excited state.
- Because of the difference in bonding interactions, the profile of the absorptions correspond to different functional group in organic compounds

Infrared Spectroscopy

- In infrared spectroscopy, the sample (and reference) as exposed to a beam of infrared laser
- A detector is placed on the other side to measure how much light is transmitted
- The computer then produces a graph of wavenumber (cm⁻¹) vs transmission

- Wavenumber is proportional to energy

IR Absorption regions

Bond Present	Wavenumber cm ⁻¹
-OH (Alcohol)	3700 – 3200
-OH (Carboxylic acid)	3600 – 2500 (broad peak)
N-H	3500 – 3100
C-H	3100 – 2800
C=O	1850 – 1600
C=C	1680 - 1600
C-0	1250 - 1050

Carboxylic acid

Aldehyde

Alcohol

