Chemistry 3.2 Molecular Spectroscopy

¹³C Nuclear Magnetic Resonance Spectroscopy (¹³C NMR)

NMR

- Large magnet aligns all the nuclei along the magnetic field
- The nuclei are then exposed to a series of radiowave pulses
- As the nuclei relax back to its ground state, a radiowave is emitted
- The intensity of the emission is measured against the standard

Carbon Environments

- In ¹³C NMR, it identifies how many C environment the molecules has
- The number of carbon environments in a molecule depends on the carbon bonding arrangement
 - If two carbon atoms have the same atom connectivity they will only give one peak

Example

Two amino acids Isoleucine and Leucine Isoleucine has 6 carbon environments Leucine has 5 carbon environments Which one is isoleucine and which one is leucine???

Chemical shift

- Similar to IR, each functional group gives out a particular signal.
- In NMR, the more electropositive carbon, the higher the chemical shift
- A table for chemical shift will be provided in the test

¹³C NMR Chemical shifts

Carbon environment	chemical shift (ppm)
C=O (in ketones)	205 - 220
C=O (in aldehydes)	190 - 200
C=O (in acids and esters)	170 - 185
C in aromatic rings	125 - 150
C=C (in alkenes)	115 - 140
RCH ₂ OH	50 - 65
RCH ₂ Cl	40 - 45
RCH ₂ NH ₂	37 - 45
R ₃ CH	25 - 35
CH ₃ CO-	20 - 30
R ₂ CH ₂	16 - 25
RCH ₃	10 - 15

Example CH₃CH₂CH₂CH₂CH₂ CH₃CH₂CHCH₃ CH_3 CH_3 CH_3 Br Br Br Br Br Br Br Br Br

- Determine the number of different chemical environments for the carbon atoms in each of these isomers
- What feature would you expect from a MS spectra of these isomers?

Which isomer in the previous slide corresponds to this spectra? Circle the carbon responsible for the peak observed in 62.1 ppm

The isomer was exposed to KOH in an unknown condition. The product gives a spectra above.

- What is the condition of the KOH?
- Justify your answers in terms of chemical shift