3.3 Describe oxidation-reduction processes assessment schedule 2007

Question	Answer	Achievement	Achievement	Achievement
number	00 4 ⁺	2	with Merit	with Excellence
ONE	$SO_2 = 4^+$ $H_2SO_4 = 6^+$	3 correct		
(a)	$SO_4^{2^-} = 6^+$ $H_2S = 2^-$ $SO_4^{2^-} + 10H^+ + 8e^- \rightarrow H_2S + 4H_2O$			
(b)	$SO_4^{2-} + 10H^+ + 8e^- \rightarrow H_2S + 4H_2O$	One half-equation	Both half-	Full equation
	$(2\Gamma \rightarrow I_2 + 2e^-) \times 4$	correct	equations correct	correct
	$SO_4^{2-} + 10H^+ + 8I^- \rightarrow H_2S + 4H_2O + 4I_2$			
(c)	Iodide ions are the stronger reducing agent Because iodide reduces	Identifies iodide	Explains why	
	sulfur by more oxidation numbers than bromide.	strongest reducing	they chose iodide	
	·	agent		
TWO		Equation correct	Both equation	
(a)	(i) $Fe^{2+}_{(aq)} \rightarrow Fe^{3+}_{(aq)} + e^{-}$	•	and observation	
	Observation: green solution → yellow solution		correct	
	(ii) $H_2C_2O_4 \rightarrow 2CO_2 + 2H^+ + 2e^-$	Equation correct	Both equation	
	Observation: colourless solution → colourless solution + gas	1	and observation	
	6		correct	
	(iii) $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	Equation correct	Both equation	
	Observation: orange solution → green solution		and observation	
	geografian orango poranzon groom poranzon		correct	
(b)	$(MnO_4^- + 2H_2O + 3e^- \rightarrow MnO_2 + 4OH^-) \times 2$	One half-equation	Both half-	Full equation
	$I + 6OH^{-} \rightarrow IO_{3} + 3H_{2}O + 6e^{-}$	correct	equations correct	correct
	$2MnO_4^- + I^- + H_2O \rightarrow 2MnO_2 + IO_3^- + 2OH^-$			
THREE		Both equations	All correct	
(a)	$Zn \rightarrow Zn^{2+} + 2e^{-}$ Oxidant is copper	correct OR both		
	$Cu^{2+} + 2e^{-} \rightarrow Cu$ Reductant is Zinc	oxidant and		
		reductant		
		identified		

(b)	Zn electrode anode - Salt bridge CH4 Copper sulfate (aq)	Electrodes, Voltmeter and solutions labelled correctly	Electrodes, Voltmeter, solutions and salt bridge labelled correctly	Electrodes, Voltmeter solutions, salt bridge and electron direction labelled correctly
(c)	$\begin{split} E^{\circ}_{(cell)} &= E^{\circ}_{(RHE)} - E^{\circ}_{(LHE)} \\ E^{\circ}_{(cell)} &= +0.34 \ V0.76 \ V \\ E^{\circ}_{(cell)} &= +1.10 \ V \end{split}$	Correct answer		
FOUR (a)	$Pb \rightarrow Pb^{2+} + 2e^{-} Oxidation$ $PbO_2 + 4H^{+} + 2e^{-} \rightarrow Pb^{2+} + 2H_2O$ Reduction 	One half-equation correct and identified	Both half- equations correct and identified	Full equation correct plus identified
(b)	PbSO ₄ precipitate and sulfuric acid concentration decreases.	Both correct		
(c)	$2Pb^{2+} + 2H_2O \rightarrow Pb + PbO_2 + 4H^+$	Equation correct		

FIVE		One correct	Two correct	Three correct
(a)	$E^{\circ}_{(cell)} = E^{\circ}_{(RHE)} - E^{\circ}_{(LHE)}$	calculation and	calculations and	calculations and
	$E_{(cell)}^{\circ} = +1.07 \text{ V} - +0.77 \text{ V}$	answer	answers	answers
	$E^{\circ}_{(cell)} = +0.30V$			
	$E^{\circ}_{(cell)}$ is positive, so Br_2 will oxidise Fe^{2+} to Fe^{3+}			
(b)	$E^{\circ}_{(cell)} = E^{\circ}_{(RHE)} - E^{\circ}_{(LHE)}$ $E^{\circ}_{(cell)} = +1.78 \text{ V} - +2.87 \text{ V}$			
	$E^{\circ}_{(cell)} = -1.09 \text{ V}$			
	$E^{\circ}_{(cell)}$ is negative, so H_2O_2 will not oxidise F^{-} to F_2			
(c)	$E^{\circ}_{(cell)} = E^{\circ}_{(RHE)} - E^{\circ}_{(LHE)}$ $E^{\circ}_{(cell)} = +1.33 \text{ V}0.76 \text{ V}$			
	$E^{\circ}_{(cell)} = +2.09 \text{ V}$			
	$E^{\circ}_{(cell)}$ is positive, so Zn will reduce $Cr_2O_7^{2-}$ to Cr^{3+}			
SIX		Two correct		
(a)	$Ag^{+} + 1e^{-} \rightarrow Ag$ $Cl^{-} \rightarrow Cl + 1e^{-}$	equations		
(b)		One correct	Two correct	
(i)	$Cu^{+} + Cl \rightarrow Cu^{2+} + Cl^{-}$	equation	equations	
(ii)	$Cu^{2+} + Ag \rightarrow Ag^{+} + Cu^{+}$			

Sufficiency statement: Achievement: 8 out of the 16 achievement opportunities

Merit: Achievement, plus 6 out of the 11 merit opportunities Excellence: Merit, plus 3 out of the 5 excellence opportunities