
## Chemistry 3.5 Advanced Organic Chemistry

**Alcohol Chemistry** 

# Alcohols

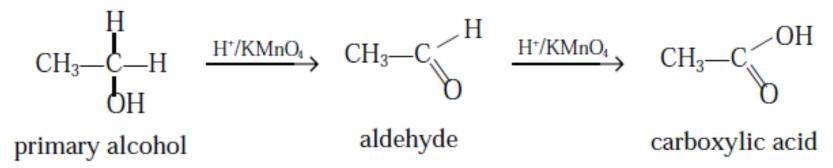
- Three types of alcohols
  - Primary
    - The –OH group bonded to a carbon that is bonded to zero or one other carbon atom
  - Secondary
    - The –OH group bonded to a carbon that is bonded to two other carbon atoms
  - Tertiary
    - The –OH group bonded to a carbon that is bonded to three other carbon atoms



#### Lucas test

- Lucas reagent HCl / ZnCl<sub>2</sub>
- Lucas test can be used to distinguish between water soluble alcohols
- This is a substitution reaction where the –OH is replaced by –Cl

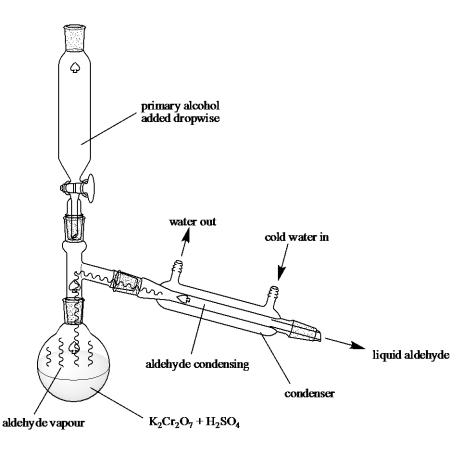
$$R - OH + HCI \rightarrow R - CI + H_2O$$


• ZnCl<sub>2</sub> is used as catalysis

#### **Observation for Lucas test**

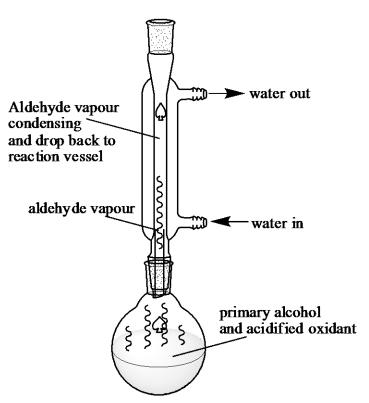
- If reaction occurs, the mixture will turn cloudy due to the formation of the immiscible (insoluble) chloroalkane
- Rate of reactions
  - 3º Alcohols very fast (immediately turn cloudy)
  - 2° Alcohol go cloudy after few minutes heated
  - 1° Alcohol VERY slow (no observation after 10 minutes of heating)

#### Oxidation of 1° Alcohol


- The reactions of alcohols with an oxidant such as K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> or KMnO<sub>4</sub> under acidic conditions
- Primary alcohols are oxidised first to an aldehyde
- Then further oxidised to a carboxylic acid

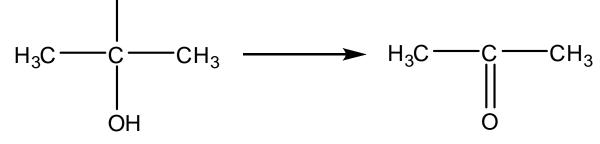


## Preparation of an aldehyde


#### **Distillation (for aldehyde)**

- To separate liquid by their difference in boiling point
- Aldehydes have a lower boiling point compared to alcohols (reactant) and carboxylic acids (by product)
- Therefore aldehyde will turned to gas and separated off from the rest of the mixture




## Preparation of a carboxylic acid

- Reflux (for carboxylic acid)
- To provide heat to speed up reactions
- Organic chemicals (such as aldehydes) usually have low boiling point
- To keep the reactant in the reaction vessel the condenser is placed above the reaction vessel
- Any chemical that is vaporised will turn back to liquid and return to the reaction vessel



## Oxidation of 2° Alcohol

- Secondary alcohol will oxidize to form a ketone
- Reflux is still used to retain the reactants and products



• Tertiary alcohol **cannot** be oxidized

#### Other alcohol reactions

• Substitution reactions with  $PCl_5$  or  $SOCl_2$ Eg.  $CH_3CH_2OH \rightarrow CH_3CH_2Cl$ 

• Elimination reaction with  $H_2SO_{4 (conc)}$ Eg.  $CH_3CH_2OH \rightarrow CH_2CH_2$