Chemistry 3.5 Advanced Organic Chemistry

Aldehydes and Ketones

Carbonyl group

- Carbonyl group, C=O
- If the carbonyl group located in the 1st carbon, it is an aldehyde (suffix anal)

• If the carbonyl group located within the chain, it is a ketone (suffix an-#-one)

Aldehyde oxidation

As mentioned before

Aldehydes can be further oxidized to form carboxylic acid

CHO +
$$H_2O \rightarrow COOH + 2H^+ + 2e^-$$

- This can be done by oxidising agent such as KMnO₄ or K₂Cr₂O₇
- KMnO₄ and K₂Cr₂O₇ can oxidize 1°, 2° alcohol as well as aldehyde because they are strong oxidising agent

Tollens and Benedict/Feblings

- Tollens reagent as well as Benedict/ Feblings reagent are mild oxidising agent
- They only oxidize aldehydes and not alcohols
- Tollens $[Ag(NH_3)_2]^+$
 - Colourless → shiny grey solid (or silver mirror)
 - $[Ag(NH_3)_2]^+ + e^- \rightarrow Ag + 2 NH_3$
- Benedict/Feblings Cu²⁺ complex
 - Blue to red-brown precipitate
 - $-H_2O + 2Cu^{2+} + e^{-} \rightarrow Cu_2O + 2H^{+}$

Reduction of Aldehyde and Ketone

- With a strong reducing agent NaBH₄/OH⁻, ketone and aldehyde can be reduced back to the respective alcohols.
- However, NaBH₄ is not strong enough to reduce carboxylic acid back to aldehyde.