Chemistry 3.6

Worksheet

Name \qquad

The K_{a} for propanoic acid is $1.35 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ at $25^{0} \mathrm{C}$
（a）Write the K_{a} expression for the dissociation of propanoic acid， $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ ．

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}{ }_{(\mathrm{aq)}}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})} \\
K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}
\end{gathered}
$$

（b）Calculate the pH of a $0.120 \mathrm{~mol} \mathrm{~L}^{-1}$ solution of propanoic acid at $25^{\circ} \mathrm{C}$ ．Include any assumptions you

Most of the $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}_{(\text {aq）}}$ does not dissociate as the K_{a} is small．$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]=0.120 \mathrm{molL}^{-1}$
Also $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$because $\mathrm{H}_{3} \mathrm{O}^{+}$from water dissociation is significantly small

$$
\begin{gathered}
\mathrm{K}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{c \mathrm{CH} \mathrm{CH}_{2} \mathrm{COOH}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{0.120}=1.35 \times 10^{-5} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{\left(1.35 \times 10^{-5} \times 0.120\right)}=0.001273 \mathrm{molL}^{-1}} \\
\mathrm{pH}=-\log (0.001273)=\underline{\underline{2.90}}
\end{gathered}
$$

（c）Calculate the pH of a $0.120 \mathrm{molL}^{-1}$ solution of sodium propanoate at $25^{\circ} \mathrm{C}$ ．Include any assumption

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}_{(\mathrm{aq)}}^{-}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \\
K_{b}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]} \\
K_{b}=\frac{K_{w}}{K_{a}}=\frac{10^{-14}}{1.35 \times 10^{-5}}=7.41 \times 10^{-10}
\end{gathered}
$$

Assumptions are．．．
Most of the $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}$ does not dissociate as K_{b} is small．$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]=0.120 \mathrm{molL}^{-1}$ Also $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\left[\mathrm{OH}^{-}\right]$because $\left[\mathrm{OH}^{-}\right]$from water dissociation is significantly small

$$
\begin{gathered}
K_{b}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{c \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{0.120}=7.41 \times 10^{-10} \\
{\left[\mathrm{OH}^{-}\right]=\sqrt{\left(7.41 \times 10^{-10} \times 0.120\right)}=9.43 \times 10^{-6} \mathrm{molL}^{-1}} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{K_{w}}{\left[\mathrm{OH}^{-}\right]}=\frac{10^{-14}}{9.43 \times 10^{-6}}=1.06 \times 10^{-9} \mathrm{molL}^{-1}} \\
\mathrm{pH}=-\log \left(1.06 \times 10^{-9}\right)=\underline{\underline{8.97}}
\end{gathered}
$$

（d）What is the concentration of propanoic acid in the solution that gives a pH of 4.5

$$
\begin{gathered}
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{c \mathrm{CH} \mathrm{CH}_{2} \mathrm{COOH}} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-4.5}=3.16 \times 10^{-5} \mathrm{molL}^{-1}} \\
1.35 \times 10^{-5}=\frac{\left[3.16 \times 10^{-5}\right]^{2}}{c \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}} \\
c \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}=\frac{\left[3.16 \times 10^{-5}\right]^{2}}{1.35 \times 10^{-5}}=7.41 \times 10^{-5} \mathrm{molL}^{-1}
\end{gathered}
$$

O
O
rise

$$
\begin{aligned}
& \text { Chemistry } 3.6 \\
& \text { Question One } \\
& \text { (a) Write the } \mathrm{K}_{\mathrm{a}} \text { expression for propanoic acid is } 1.3 \text {, } \\
& \text { (b) Calculate the } \mathrm{pH} \text { of a } 0.12 \\
& \text { may make. } \\
& \text { Assumptions are... } \\
& \text { Most of the } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}_{(a q)} \text { do } \\
& \text { Also }\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {bec } \\
& \text { (c) Calculate the } \mathrm{pH} \text { of a } 0.12 \\
& \text { you may make. }
\end{aligned}
$$

Question Two

Shellfish build shells mainly of calcium carbonate，which is only slightly soluble in water．

$$
\mathrm{CaCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})
$$

（a）Write the K_{s} expression for CaCO_{3}

$$
\mathrm{K}_{\mathrm{s}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]
$$

（b） K_{s} for CaCO_{3} at $25^{\circ} \mathrm{C}$ is 5.0×10^{-9} ．Calculate the solubility of CaCO_{3} in pure water．

CaCO_{3} is an AB type salt

$$
\text { Solubility }=\sqrt{K_{s}}=\sqrt{5.0 \times 10^{-9}}=7.07 \times 10^{-5} \mathrm{molL}^{-1}
$$

（c）What would be the solubility of CaCO_{3} in $0.1 \mathrm{molL}^{-1}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
\begin{gathered}
\mathrm{K}_{\mathrm{s}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}^{2-}\right] \\
5.0 \times 10^{-9}=\left[\mathrm{Ca}^{2+}\right] \times 0.1 \\
{\left[\mathrm{Ca}^{2+}\right]=\text { solubility }=\frac{5.0 \times 10^{-9}}{0.1}=5 \times 10^{-8} \mathrm{molL}^{-1}}
\end{gathered}
$$

（d）Discuss with equations and calculations if a precipitate of CaCO_{3} will form when 85 mL of sea water with Ca^{2+} concentration of $0.0260 \mathrm{molL}^{-1}$ is mized with 900 mL of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution with a concentration of $0.020 \mathrm{molL}^{-1}$

$$
\begin{gathered}
\text { Amount of } \mathrm{Ca}^{2+}=0.026 \mathrm{molL}^{-1} \times 0.085 \mathrm{~L}=0.00221 \mathrm{~mol} \\
\text { Amount of } \mathrm{CO}_{3}^{2-}=0.02 \mathrm{molL}^{-1} \times 0.9 \mathrm{~L}=0.018 \mathrm{~mol} \\
{\left[\mathrm{Ca}^{2+}\right]=0.00221 \mathrm{~mol} \div(0.085+0.9) \mathrm{L}=0.002244 \mathrm{molL}^{-1}} \\
{\left[\mathrm{CO}_{3}^{2-}\right]=0.018 \mathrm{~mol} \div(0.085+0.9) \mathrm{L}=0.018274 \mathrm{molL}^{-1}} \\
\mathrm{IP}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}^{2-}\right]=0.002244 \mathrm{molL}^{-1} \times 0.018274 \mathrm{molL}^{-1}=4.1 \times 10^{-5}
\end{gathered}
$$ IP $>\mathrm{K}_{\mathrm{s}}$ therefore the mixture is over saturated，precipitate will form．

