Chemistry 3.6 Aqueous Systems

Aqueous Solutions

Dissolving solid

 When a solid substance (crystal) is dissolved, the crystal break apart into its individual particle.

- Molecular substances \rightarrow individual molecules

$$C_{6}H_{12}O_{6(s)} \rightarrow C_{6}H_{12}O_{6(aq)}$$
- Ionic substances \rightarrow individual ions

$$CaCl_{2(s)} \rightarrow Ca^{2+}_{(aq)} + 2Cl^{-}_{(aq)}$$

Solubility Constant

- Solubility Constant (K_s) is the equilibrium constant for dissolving a substance
- Depending on the nature of the solute, there are different way to express K_s

$$\begin{array}{ll} -A_{(s)} & \longrightarrow & A_{(aq)} & K_{s} = [A] & \text{eg sugar} \\ -AB_{(s)} & \longrightarrow & A^{+}_{(aq)} + B^{-}_{(aq)} & K_{s} = [A^{+}][B^{-}] & \text{eg NaCl} \\ -A_{2}B_{(s)} & \longrightarrow & 2A^{+}_{(aq)} + B^{2-}_{(aq)} & K_{s} = [A^{+}]^{2}[B^{2-}] & \text{eg Na}_{2}CO_{3} \\ -AB_{2(s)} & \longrightarrow & A^{2+}_{(aq)} + 2B^{-}_{(aq)} & K_{s} = [A^{2+}][B^{-}]^{2} & \text{eg Ca(OH)}_{2} \end{array}$$

Ionic product

- Ionic product (IP) is the Reaction Quotient (Q) of a solution at a given moment of time.
- When IP < K_s, the solution is unsaturated, meaning it is possible to dissolve more solute into the solution.
- When IP = K_s, the solution is at the point of saturation. It reaches it maximum solubility.
- When IP > K_s, the solution is over saturated, meaning it is not possible to dissolve more solute into the solution and precipitate will form.

Try This

Determine **whether** a **precipitate** of silver chromate (Ag₂CrO₄), will form when 25.0 mL of 1.20×10^{-3} molL⁻¹ silver nitrate solution (AgNO₃) is mixed with 25.0 mL of 4.50 × 10⁻⁴ molL⁻¹ potassium chromate solution (K_2CrO_4).

 $K_{c} (Ag_{2}CrO_{4}) = 1.9 \times 10^{-12}$

Answer

Solubility

- Solubility of a substance is the maximum concentration (in molL⁻¹) the solute can dissolves at a particular temperature
- This can be calculated by solving the 1:1 species concentration from K_s

$$-A_{(s)} \rightarrow A_{(aq)} \qquad K_{s} = [A] \qquad [A]$$

$$-AB_{(s)} \rightarrow A^{+}_{(aq)} + B^{-}_{(aq)} \qquad K_{s} = [A^{+}][B^{-}] \qquad [A] \text{ or } [B]$$

$$-A_{2}B_{(s)} \rightarrow 2A^{+}_{(aq)} + B^{2-}_{(aq)} \qquad K_{s} = [A^{+}]^{2}[B^{2-}] \qquad [B]$$

$$-AB_{2(s)} \rightarrow A^{2+}_{(aq)} + 2B^{-}_{(aq)} \qquad K_{s} = [A^{2+}][B^{-}]^{2} \qquad [A]$$

Calculating solubility for AB

- Calculating the solubility for ionic compound AB when given the K_s
- 1. Given that $AB_{(s)} \rightarrow A^+_{(aq)} + B^-_{(aq)}$
- 2. $K_s = [A^+][B^-]$
- 3. [A⁺] = [B⁻]
- 4. Therefore $K_s = [A^+]^2$ or $[B^-]^2$
- 5. As a result

Solubility of $AB = [A] = \sqrt{K_s}$

Calculating solubility for A₂B

- Calculating the solubility for ionic compound
 A₂B when given the K_s
- 1. Given that $A_2B_{(s)} = 2A^+_{(aq)} + B^{2-}_{(aq)}$
- 2. $K_s = [A^+]^2 [B^{2-}]$
- 3. The solubility = $[B^{2-}]$
- 4. Which means $2[B^{2-}] = [A^+]$
- 5. Therefore $K_s = (2[B^{2-}])^2 [B^{2-}] = 4[B^{2-}]^3$
- 6. As a result

Solubility of
$$A_2 B = \sqrt[3]{\frac{K_s}{4}}$$

Calculating solubility for AB₂

- Calculating the solubility for ionic compound AB₂ when given the K_s
- 1. Given that $A_2B_{(s)} \rightarrow A^{2+}_{(aq)} + 2B^{-}_{(aq)}$
- 2. $K_s = [A^{2+}][B^{-}]^2$
- 3. The solubility = $[A^{2+}]$
- 4. Which means $2[A^{2+}] = [B^{-}]$
- 5. Therefore $K_s = (2[A^{2+}])^2 [A^{2+}] = 4[A^{2+}]^3$
- 6. As a result

Solubility of
$$AB_2 = \sqrt[3]{\frac{K_s}{4}}$$

Example

The solubility product (K_s) for silver chromate (Ag_2CrO_4) is 1.9×10^{-12} . Calculate the solubility, in molL⁻¹, of Ag_2CrO_4 in water at 25°C

Common ion effect

- Common ion effect is the decrease in solubility due to addition of a "common ion".
 Eg. Common ion of NaCl are Na⁺ or Cl⁻
- Addition of common ion increases the concentration of the product, since K_s does not change, therefore the solubility has to decrease in order for K_s to remain the same.
- Once again if the IP is higher than K_s,
 precipitation will occur

Example

Addition of silver nitrate $(AgNO_3)$ solution to a saturated solution of silver chromate (Ag_2CrO_4) causes silver chromate to precipitate out. Discuss this observation

Answers

Removing ion from solution

- **Opposite** to addition of **common ion**, removing ion from the solution will increase the **solubility**
- This can be done in two ways
 - Reacting under acid and base reaction
 - Adding acid to oxide or hydroxide solution
 - Forming complex ions (in particular NH₃)
 [Pb(OH)₄]²⁻
 - FeSCN²⁺
 - $[Ag(NH_3)_2]^+$
 - [Al(OH)₄]⁻

- [Zn(OH)₄]²⁻
- $[Zn(NH_3)_4]^{2+}$
- $[Cu(NH_{A})_{A}]^{2+}$

Example

Explain why the precipitate of $Cu(OH)_2$ redissolved when aqueous NH_3 is added