Chemistry 3.6 Aqueous Systems

Buffer solutions

Common weak acid and base

Weak acid
Most Organic acid
$\mathrm{CH}_{3} \mathrm{COOH}$
Some inorganic acid HF
Conjugate acid $\mathrm{NH}_{4}{ }^{+}$

Weak base
Most organic Amine $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
Some Inorganic base
$\mathrm{NH}_{3}, \mathrm{CO}_{3}, \mathrm{HCO}_{3}{ }^{-}$
Conjugate base $\mathrm{CH}_{3} \mathrm{COO}^{-}$

Buffer solution

- Buffer solution is a mixture of weak acid and its conjugate base. ($\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$)
- Or vice versa, a mixture of weak base and its conjugate acid. (NH_{3} and $\mathrm{NH}_{4}{ }^{+}$)
- Because both acid and base is present in the mixture, therefore its able to maintain a reasonable constant pH on addition of small amounts of H^{+}or OH^{-}.

Example

- A buffer solution of ammonia $\left(\mathbf{N H}_{3}\right)$ and ammonium chloride ($\mathbf{N H}_{4} \mathbf{C l}$)
$-\mathrm{NH}_{4}{ }^{+}$is the conjugate acid of NH_{3}
- When small amount of sodium hydroxide $\left(\mathrm{OH}^{-}\right)$is added

$$
\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

- When small amount of $\mathrm{HCl}\left(\mathrm{H}^{+}\right)$is added

$$
\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

- In both scenarios, there are no overall change in [H^{+}] and [OH^{-}] so no pH changed.

How to make buffer solution

- There are two possible ways to prepare a buffer solution

1. Mix a weak acid (or weak base) with its conjugate base (or conjugate acid)
Example: $\mathbf{N H}_{4} \mathbf{C l}$ mixed with $\mathbf{N H}_{3}$
2. React some (usually $1 / 2$) of the weak acid (or weak base) with a strong base (or strong acid) to create a mixture of weak acid and its conjugate base
Example: $\mathrm{CH}_{3} \mathbf{C O O H}+\mathrm{NaOH} \rightarrow \mathrm{NaCH}_{3} \mathbf{C O O}+\mathrm{H}_{2} \mathrm{O}$

Calculations

- Many ways to approach a buffer calculation
- Simplest way is to use the K_{a} expression

$$
K a=\frac{\left[H_{3} O^{+}\right]\left[A^{-}\right]}{[H A]}
$$

- Another way is to use the formula

This formula is mathematically the same as above (see whiteboard)

$$
p H=p K_{a}+\log \frac{[\text { Base }]}{[\text { Acid }]}
$$

