# Chemistry 3.7 Advanced Redox Chemistry 

Introduction and recap

## Redox

- Reduction - Oxidation



## LEO- Loss Electrons Oxidation

- Oxidation is the half of a reaction where a substance loses electron(s)
- Example: When sodium metal is put into water
- Sodium metal becomes sodium ion
- Electron as a product (RHS of equation)

$$
\mathrm{Na} \rightarrow \mathrm{Na}^{+}+\mathrm{e}^{-} \quad \text { Oxidation }
$$

## GER- Gain Electrons Reduction

- Reduction is the half of a reaction where a substance gains electron(s)
- Example: When magnesium is burned with oxygen
- Oxygen becomes oxide ion
- Electrons as a reactant (LHS of equation)
$\mathrm{O}_{2}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{O}^{2-}$


## Oxidation number (ON)

- Also known as oxidation state
- It is a description of how much a substance is being oxidized
- +/- \#

Example
$\mathrm{Zn}^{2+}$ has an oxidation number of +2

When atoms exist as elements, they have an oxidation number of zero

The oxidation number of a monoatomic ion (ion with a single atom) is the same as the charge of the ion

Hydrogen in compounds has an oxidation number of $\boldsymbol{+ 1}$ (with exception of metal hydrides which is -1 )

Oxygen in compounds has an oxidation number of -2 (with exception of peroxide which is -1)

For polyatomic ions (ions containing more than one atom) the sum of oxidation number equals the charge of the ion

The sum of the oxidation numbers of compounds is zero
$\mathrm{Na}, \mathrm{Cl}_{2}$, diamond, $\mathrm{H}_{2}, \mathrm{~S}_{8} \ldots$ all have an oxidation number of zero

ON of $\mathrm{Zn}^{2+}=+2$
ON of $\mathrm{Cl}^{2}=-1$
ON of $\mathrm{O}^{2-}=-2$
The ON of Hydrogen in $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}$, $\mathrm{NH}_{3}$ are all +1

The ON of oxygen in $\mathrm{H}_{2} \mathrm{O}, \mathrm{MgO}$, $\mathrm{CO}_{2}, \mathrm{OCl}^{-}$, are all -2
$\mathrm{CO}_{3}{ }^{2-}$
Since oxygen is always -2 which means carbon has to be +4 in order to form a 2-anion
$\mathrm{CH}_{4}$
Since hydrogen is always +1 which means carbon has to be -4 in order to have a sum of zero

## Change in Oxidation number

- If a substance's oxidation number increases, the substance is being oxidized. Oxidation has occurred.
- If a substance decreases in oxidation number, the substance is being reduced. Reduction has occurred.


## Reaction pair

- Each redox reaction is a pair of half equations
- Reductant (reducing agent) = electron provider
- Under goes oxidation
- Oxidation number increases
- Oxidant (oxidizing agent) = electron acceptor
- Under goes reduction
- Oxidation number decreases


## Example

Burning magnesium
$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$

1. Mg is a metallic substance
2. It is in its elemental form
3. $\mathrm{ON}=0$
4. $\mathrm{O}_{2}$ is a molecular substance
5. It is in its elemental form
6. $\mathrm{ON}=0$
7. MgO is an ionic substance
8. Consist of $\mathrm{Mg}^{2+}$ and $\mathrm{O}^{2-}$ ions
9. The ON for $\mathrm{Mg}^{2+}$ is +2
10. The ON for $\mathrm{O}^{2-}$ is -2

Mg's ON from
zero to +2
Mg is being oxidizied
Mg is the reductant

O's ON from
zero to -2
O is being reduced
$\mathrm{O}_{2}$ is the oxidant

## Writing $1 / 2$ equations in acidic condition

- These rules applied for acidic aqueous system

1. Balance the atoms that are not O or H
2. Balance the oxygen by adding $\mathrm{H}_{2} \mathrm{O}$
3. Balance the hydrogen by adding $\mathrm{H}^{+}$
4. Balance the charge by adding electrons

## In Basic condition (New stuff)

- Balanced the equation as if acidic condition
- For each $\mathrm{H}^{+}$, add $\mathrm{OH}^{-}$on BOTH side of the $1 / 2$ equation
- $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
- Cancel off the $\mathrm{H}_{2} \mathrm{O}$


## Example \#1

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cr}^{3+}
$$

1. Balance the atoms that are not O or H

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \rightarrow 2 \mathrm{Cr}^{3+}
$$

2. Balance the oxygen by adding $\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

3. Balance the hydrogen by adding $\mathrm{H}^{+}$

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

4. Balance the charge by adding electrons

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

## Example \#2

$$
\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}
$$

1. Balance the atoms that are not O or H

$$
\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}
$$

2. Balance the oxygen by adding $\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+\mathbf{4 \mathrm { H } _ { \mathbf { 2 } } \mathrm { O }}
$$

3. Balance the hydrogen by adding $\mathrm{H}^{+}$

$$
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

4. Balance the charge by adding electrons

$$
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

## Writing overall equation

- In other words, joining two half equations by getting rid of electrons.
- Take the following as an example

Aluminium being oxidized by oxygen

$$
\begin{gathered}
\mathrm{Al} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{e}^{-} \\
4 \mathrm{e}^{-}+\mathrm{O}_{2} \rightarrow 2 \mathrm{O}^{2-}
\end{gathered}
$$

The lowest common multiple of number of electrons is 12

$$
\begin{gathered}
\left(\mathrm{Al}_{\mathrm{Al}}^{\left.\mathrm{Al}^{++}+3 \mathrm{e}^{-}\right) \times 4=4 \mathrm{Al}^{2-} \rightarrow 4 \mathrm{Al}^{3+}+42 \mathrm{e}^{-}}\right. \\
\left(4 \mathrm{e}^{-}+\mathrm{O}_{2} \rightarrow 2 \mathrm{O}^{-2}\right) \times 3=42 \mathrm{Al}^{-}+3 \mathrm{O}_{2} \rightarrow 6 \mathrm{O}^{2-} \\
4 \mathrm{O}_{2} \rightarrow 4 \mathrm{Al}^{3+}+6 \mathrm{O}^{2-}
\end{gathered}
$$

## Try this

- $\mathrm{MnO}_{4}^{-}{ }_{\text {(aq) }} \rightarrow \mathrm{MnO}_{2(\mathrm{~s})}$ (slightly basic condition)
- $\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}$

1) Write $1 / 2$ equation for permanganate
2) Write $1 / 2$ equations for iron (II)
3) Write overall equation
