Chemistry 3.7 Advanced Redox Chemistry

Introduction and recap

Redox

• **Red**uction – **Ox**idation

LEO- Loss Electrons Oxidation

- Oxidation is the half of a reaction where a substance loses electron(s)
 - Example: When sodium metal is put into water
 - Sodium metal becomes sodium ion
 - Electron as a product (RHS of equation)

 $Na \rightarrow Na^+ + e^-$ Oxidation

GER- Gain Electrons Reduction

- Reduction is the half of a reaction where a substance gains electron(s)
 - Example: When magnesium is burned with oxygen
 - Oxygen becomes oxide ion
 - Electrons as a reactant (LHS of equation)

$$O_2 + 4e^- \rightarrow 20^{2-}$$

Oxidation number (ON)

- Also known as oxidation state
- It is a description of how much a substance is being oxidized
- +/-#

Example

Zn²⁺ has an oxidation number of +2

Rules	Example
When atoms exist as elements , they have an oxidation number of zero	Na, Cl_2 , diamond, H_{2} , S_8 all have an oxidation number of zero
The oxidation number of a monoatomic ion (ion with a single atom) is the same as the charge of the ion	ON of $Zn^{2+} = +2$ ON of $Cl^{-} = -1$ ON of $O^{2-} = -2$
Hydrogen in compounds has an oxidation number of +1 (with exception of metal hydrides which is -1)	The ON of Hydrogen in H_2O , CH_4 , NH_3 are all +1
Oxygen in compounds has an oxidation number of -2 (with exception of peroxide which is -1)	The ON of oxygen in H ₂ O, MgO, CO ₂ , OCl ⁻ , are all -2
For polyatomic ions (ions containing more than one atom) the sum of oxidation number equals the charge of the ion	CO ₃ ²⁻ Since oxygen is always -2 which means carbon has to be +4 in order to form a 2- anion
The sum of the oxidation numbers of compounds is zero	CH ₄ Since hydrogen is always +1 which means carbon has to be -4 in order to have a sum of zero

Change in Oxidation number

- If a substance's oxidation number increases, the substance is being oxidized.
 Oxidation has occurred.
- If a substance decreases in oxidation number, the substance is being reduced.
 Reduction has occurred.

Reaction pair

- Each redox reaction is a pair of half equations
- Reductant (reducing agent) = electron provider
 - Under goes oxidation
 - Oxidation number increases
- Oxidant (oxidizing agent) = electron acceptor
 - Under goes reduction
 - Oxidation number decreases

Example

Burning magnesium

$$2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$$

- 1. Mg is a metallic substance
 - 1. It is in its elemental form
 - 2. ON = 0
- 2. O₂ is a molecular substance
 - 1. It is in its elemental form
 - 2. ON = 0
- 3. MgO is an ionic substance
 - 1. Consist of Mg^{2+} and O^{2-} ions
 - 2. The ON for Mg^{2+} is +2
 - 3. The ON for O^{2-} is -2

Mg's ON from

zero to +2

Mg is being oxidizied

Mg is the reductant

O's ON from

zero to -2

O is being reduced

O₂ is the oxidant

Writing ½ equations in acidic condition

- These rules applied for acidic aqueous system
- 1. Balance the atoms that are not O or H
- 2. Balance the oxygen by adding H₂O
- 3. Balance the hydrogen by adding H⁺
- 4. Balance the charge by adding electrons

In Basic condition

(New stuff)

- Balanced the equation as if acidic condition
- For each H⁺, add OH⁻ on BOTH side of the ½
 equation
- $H^+ + OH^- \rightarrow H_2O$
- Cancel off the H₂O

Example #1

$$Cr_2O_7^{2-} \to Cr^{3+}$$

1. Balance the atoms that are not O or H $Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$

2. Balance the oxygen by adding H₂O

$$Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O$$

- 3. Balance the hydrogen by adding H⁺ $Cr_2O_7^{2-} + 14 \text{ H}^+ \rightarrow 2Cr^{3+} + 7H_2O$
- 4. Balance the charge by adding electrons $Cr_2O_7^{2-} + 14 H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$

Example #2

$$MnO_4^- \rightarrow Mn^{2+}$$

- 1. Balance the atoms that are not O or H $MnO_{4}^{-} \rightarrow Mn^{2+}$
- 2. Balance the oxygen by adding H_2O $MnO_4^- \rightarrow Mn^{2+} + 4H_2O$
- 3. Balance the hydrogen by adding H⁺ $MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 4H_2O$
- 4. Balance the charge by adding electrons $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$

Writing overall equation

- In other words, joining two half equations by getting rid of electrons.
- Take the following as an example

Aluminium being oxidized by oxygen

$$Al \rightarrow Al^{3+} + 3e^{-}$$

 $4e^{-} + O_{2} \rightarrow 2O^{2-}$

The lowest common multiple of number of electrons is 12

$$(Al \rightarrow Al^{3+} + 3e^{-}) \times 4 = 4Al \rightarrow 4Al^{3+} + \frac{12e^{-}}{4e^{-}} + O_{2} \rightarrow 2O^{2-}) \times 3 = \frac{12e^{-}}{4Al^{3+}} + 6O^{2-}$$

 $4Al + 3O_{2} \rightarrow 4Al^{3+} + 6O^{2-}$

Try this

- $MnO_{4(aq)} \rightarrow MnO_{2(s)}$ (slightly basic condition)
- $Fe^{2+}_{(aq)} \rightarrow Fe^{3+}_{(aq)}$
- 1) Write ½ equation for permanganate
- 2) Write ½ equations for iron (II)
- 3) Write overall equation