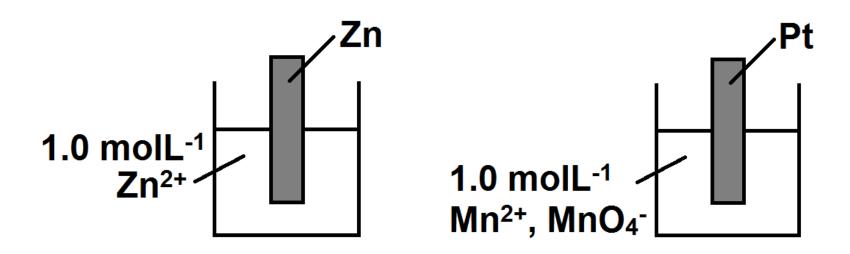
Chemistry 3.7 Redox Chemistry

Electrochemistry

Electropotential

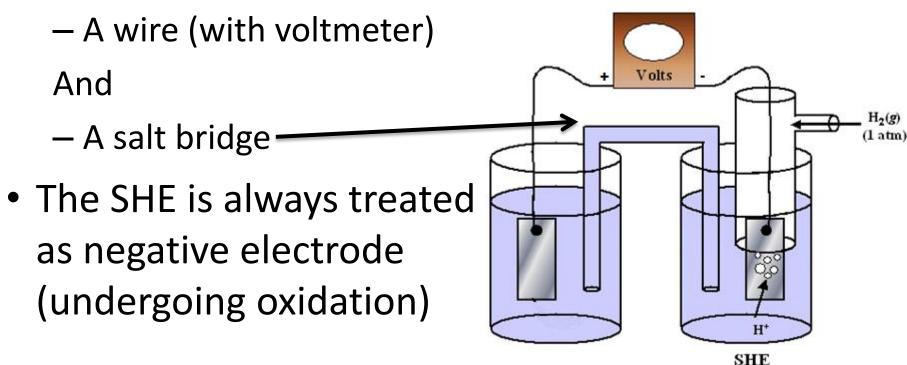
- Electropotential (also known as electromotive force, emf) is the ability of a chemical to
 - lose electron (oxidation)
 - accept electron (reduction)
- Since each redox reaction involves a reduction ½ and an oxidation ½
- This mean each redox reaction will involves two electropotentials
 - The "push of electron" from the reductant (oxidation)
 - The "pull of electron" from the oxidant (reduction)

Voltages


- The push and pull of electrons results in a "movement of electron" (electrical current)
- The energy of this movement (in the electron) is measured in Voltage (V)
- Chemists decided to standardise each chemical species that undergo oxidation or reduction by reacting them under a set of conditions

Standard condition

- In electrochemistry, chemists decided to set a parameter and called them the standard condition, the followings are the requirements
 - All elements are in pure form
 - Temperature 25°C (or 298K)
 - All concentration 1.00 molL⁻¹
 - Pressure of gases 1.0 atm (or 1.3 kPa)
 - In cases where no solid reagent involve, platinum or graphite is used as electrode


Half cell

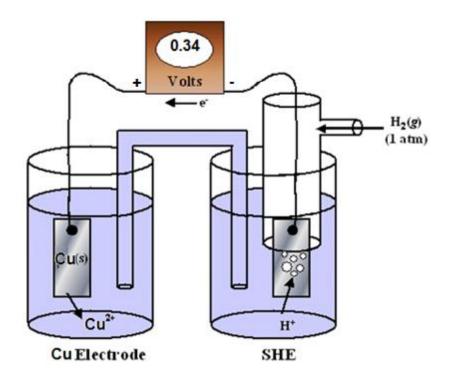
- A half cell represent a half reaction
- It contains BOTH reaction and product of a half reaction
- Below are two examples of standard ½ cell

Standard Electrode Cell

 Each standard half cell is then connected to standard hydrogen electrode, SHE (the standard ½ cell of H₂/H⁺) by:

Salt bridge

- The purpose of salt bridge is to balance the charge of each half cell
- It contains **inert salt solution** such as KNO₃
- As reaction occur, the anode side (oxidation) will loses electrons and become more positive. To balance the charge, the anions in the salt bridge will travel to the anode beaker
- Similar for cathode side (reduction) the cations will travel to the cathode beaker as it gains in electrons

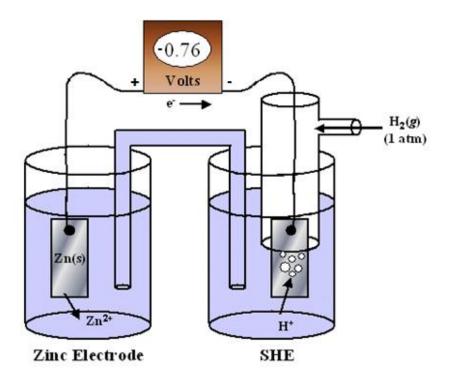

Standard Reduction Potential (E°)

 However if the other ½ cell (Cu in this case) undergo reduction, a positive voltage will be produce

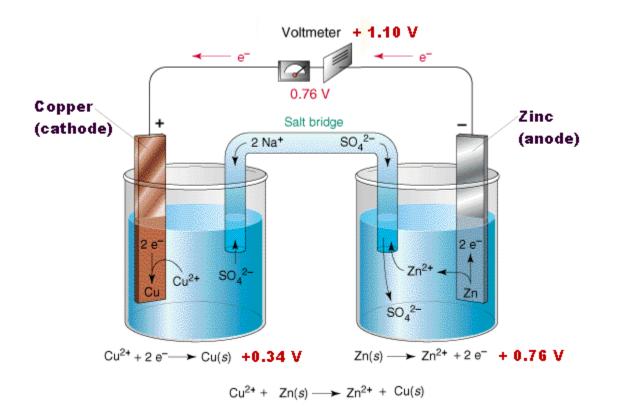
 $Cu^{2+} + 2e^{-} \rightarrow Cu$

 $H_2 \rightarrow 2H^+ + 2e^-$

The voltage measured is called the standard reduction potential (E°)



Negative E^o


 If the other ½ cell (Zn in this case) undergo oxidation, a negative voltage will be produce

Zn → Zn²⁺ + 2e⁻ (oxidation) 2H⁺ + 2e⁻ → H₂ (reduction)

 Negative voltage because now the SHE is under going reduction instead

Example

