		057					
Chemistry	2.4 (2.1)		Worl	ksheet 1		Name	
Question One							
Sulfur (S ₈) is	used in gun p	owder. It reac	ts with oxyger	n in an exothe	rmic reaction.		
$S_8 + 8O_2 \rightarrow 8SO_2$							
a) 11872 J is released when 1.28 g of sulfur (S ₈) is being burnt. Calculate the enthaphy (in kJmol ⁻¹) of							
the combustion reaction above.							
molar mass for sulfur (S ₈) = 256.8 gmol ⁻¹							
Amount of sulfur (S ₈) = 1.28 g \div 256.8 gmol ⁻¹ = 0.004984 mol							
S_8 : reaction = 1 : 1							
Energy released 11.872 kJ							
Energy change = 11.872 kJ ÷ 0.004984 mol = 2381.82 kJmol ⁻¹							
Since energy is releasing, therefore the enthalpy is <u>-2380 kJmol⁻¹ (3 s.f.)</u>							
b) Using the answers above, calculate how much energy released when:							
a. 15 g of sulfur is burnt							
15 g ÷ 256.8 gmol ⁻¹ = 0.058411 mol							
S_8 : reaction = 1 : 1 mole of reaction = 0.058411 mol							
0.058411 mol × 2380 kJmol⁻¹ = 139.125 kJ							
Therefore <u>139 kJ</u> is released when 15 g of sulfur is burnt							
b. 250 g of sulfur dioxide formed							
250 g ÷ 64.1 gmol ⁻¹ = 3.900156 mol							
SO_2 : reaction = 8 : 1 mole of reaction = 3.900156 mol ÷ 8 = 0.48752 mol							
Energy change = 0.48752 mol × 2380 kJmol ⁻⁺ = 1160.296 kJ							
Threrefore 1160 kJ is released when 250 g of sulfur dioxide formed.							
Question Tw							
Complete the table below. The first row is the example							
$25U_2 + U_2 \rightarrow 25U_3 \Delta H = -1456 \text{ kJmol}^-$							
Amount of SO ₂	Mass of SO ₂	Amount of O ₂	Mass of O ₂	Amount of SO ₃	Mass of SO₃	Amount of equation	Energy released
2	128.2 g	1	32.0 g	2	160.2 g	1	1456 kJ
	- 0				0		
0.0077		0 0 4 2 0		0 0077		0 0 4 2 0	
mol	5.62g	mol	1.41 g	mol	7.02 g	0.0438 mol	63.8 kJ
1		1	1	1			

1.99 mol

0.00221

mol

63.7g

0.0705 g

3.98 mol

0.00441

mol

319 g

0.353 g

1.99 mol

0.00221

mol

2898 kJ

3.21 kJ

3.98 mol

0.00441

mol

255 g

0.283 g