Chemistry 2.4 (2.1)

Worksheet 2

Name

Question One- Complete the table below

Change in energy	Amount (mol)	Enthalpy (kJmol ⁻¹)
5672 kJ released	0.21	-27000 kJmol⁻¹
111 kJ released	3.25	-34.2 kJmol ⁻¹
1378 J absorbed	0.00174	793 kJmol⁻¹
13.7 kJ absorbed	1.75	7.83 kJmol ⁻¹
34.9 kJ released	0.0257	-1357 kJmol ⁻¹
678.2 kJ released	2.62	-258.5 kJmol ⁻¹

Question Two

Julie-Ann added 5 g of magnesium to excess amount of hydrochloric acid. The reaction released 560
J of heat energy. Assuming all energy released is heat, what is the enthalpy of this reaction?

Mg + 2HCl \rightarrow MgCl₂ + H₂

Amount of magnesium = 5 g \div 24.3 gmol⁻¹ = 0.205761 mol

Mg : reaction 1 : 1 mole of reaction = 0.205761 mol

Energy released 560 J = 0.56 kJ

Energy change = $0.56 \text{ kJ} \div 0.205761 \text{ mol} = 2.7216 \text{ kJmol}^{-1}$

Since it is a exothermic reaction, therefore the enthalpy of this reaction is -2.72 kJmol⁻¹

2) Peter did the same reaction with 15 g of magnesium. Calculate the amount of heat energy released.

Amount of magnesium = $15 \text{ g} \div 24.3 \text{ gmol}^{-1} = 0.617284 \text{ mol}^{-1}$

Mg : reaction 1 : 1 mole of reaction = 0.617284 mol

Energy released = $0.617284 \text{ mol} \times 2.72 \text{ kJmol}^{-1} = 1.68 \text{ kJ}$

*Easier way- the amount of Mg is 3 times of Julie-Ann's reaction, therefore the amount of energy should be 3 x also. $0.56 \text{ kJ} \times 3 = 1.68 \text{ kJ}$

3) Aroha (Mr Yung's imaginary Maori friend) then did the pop test with all of the hydrogen gas in the experiments above collected. This reaction has an enthalpy of -5600 kJmol⁻¹. Calculate how much energy was released.

The amount of hydrogen = 0.205761 mol + 0.617284 mol = 0.823045 mol

 $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ -5600 kJmol⁻¹

0.823045 mol × 5600 kJmol⁻¹ = 4609 kJ released