\qquad
Question One－Complete the table below

Change in energy	Amount（mol）	Enthalpy（kJmol
5672 kJ released	0.21	$-27000 \mathrm{kJmol}^{-1}$
111 kJ released	3.25	$-34.2 \mathrm{kJmol}^{-1}$
1378 J absorbed	0.00174	$793 \mathrm{kJmol}^{-1}$
13.7 kJ absorbed	1.75	$7.83 \mathrm{kJmol}^{-1}$
34.9 kJ released	0.0257	$-1357 \mathrm{kJmol}^{-1}$
678.2 kJ released	2.62	$-258.5 \mathrm{kJmol}^{-1}$

Question Two

1）Julie－Ann added 5 g of magnesium to excess amount of hydrochloric acid．The reaction released 560 J of heat energy．Assuming all energy released is heat，what is the enthalpy of this reaction？

$$
\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

Amount of magnesium $=5 \mathrm{~g} \div 24.3 \mathrm{gmol}^{-1}=0.205761 \mathrm{~mol}$
Mg ：reaction 1：1 mole of reaction $=0.205761 \mathrm{~mol}$
Energy released $560 \mathrm{~J}=0.56 \mathrm{~kJ}$
Energy change $=0.56 \mathrm{~kJ} \div 0.205761 \mathrm{~mol}=2.7216 \mathrm{kJmol}^{-1}$
Since it is a exothermic reaction，therefore the enthalpy of this reaction is $-2.72 \mathrm{kJmol}^{-1}$
2）Peter did the same reaction with 15 g of magnesium．Calculate the amount of heat energy released． Amount of magnesium $=15 \mathrm{~g} \div 24.3 \mathrm{gmol}^{-1}=0.617284 \mathrm{~mol}$
Mg ：reaction 1：1 mole of reaction $=0.617284 \mathrm{~mol}$
Energy released $=0.617284 \mathrm{~mol} \times 2.72 \mathrm{kJmol}^{-1}=1.68 \mathrm{~kJ}$
＊Easier way－the amount of $M g$ is 3 times of Julie－Ann＇s reaction，therefore the amount of energy should be $3 \times$ also． $0.56 \mathrm{~kJ} \times 3=1.68 \mathrm{~kJ}$

3）Aroha（Mr Yung＇s imaginary Maori friend）then did the pop test with all of the hydrogen gas in the experiments above collected．This reaction has an enthalpy of $-5600 \mathrm{kJmol}^{-1}$ ．Calculate how much energy was released．
The amount of hydrogen $=0.205761 \mathrm{~mol}+0.617284 \mathrm{~mol}=0.823045 \mathrm{~mol}$

$$
\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \quad-5600 \mathrm{kJmol}^{-1}
$$

$0.823045 \mathrm{~mol}^{2} 5600 \mathrm{kJmol}^{-1}=4609 \mathrm{~kJ} \mathrm{released}^{2}$

O
r
（
Ke
或
π
＂
元
G）
烈
雨
9
gre a
c
0

