Chemistry 2.4 (2.1)

W	or	ksł	he	et	3
	U .			~ ~	•

Name

Question One- Complete the table

Reaction	Exo / endo	ΔH + / –
Burning sulfur	Exothermic	-
Water boiling	Endothermic	+
Photosynthesis	Endothermic	+
Respiration	Exothermic	-
Bond breaking	Endothermic	+
Bond making	Exothermic	-

Question Two

Burning sulfur is an exothermic reaction with an activation energy barrier of 40 kJ

 $S_8 + 8 O_2 \rightarrow 8 SO_2$ $\Delta H = -2380 \text{ kJmol}^{-1}$

Draw a fully labelled energy profile of the reaction

Calculate the amount of energy released when 1.60 g of sulfur is burnt

1.60 g \div 256.8 gmol⁻¹ = 0.006231 mol of S₈ S₈ : reaction = 1 : 1 Amount of reaction = 0.006231 mol 0.006231 mol × 2380 kJmol⁻¹ = 14.8 kJ (3 s.f.)

14.8 kJ of energy is released when 1.60 g of sulfur is burnt

What is the mass of sulfur is needed to release 3400 kJ of energy? 3400 kJ \div 2380 kJmol⁻¹ = 1.428571 mol of reaction reaction : S₈ = 1 : 1 Amount of S₈ = 1.428571 mol 1.428571 mol × 256.8 gmol⁻¹ = 367 g (3 s.f.)

<u>367 g</u> of sulfur is needed to release 3400 kJ of energy