Chemistry 2.4

Worksheet 4

Name

(All answers in 3 s.f.)

Question One- Complete the table, the specific heat energy is $4.18 \text{ Jg}^{-10}\text{C}^{-1}$

Mass (g)	Change in temperature (°C)	Energy released (J)	
3.56	13.6	202	
45.9	0.941	180.5	
0.131	-25.6	-14.0	
100	0.374	156.3	
15.3	100	6400	
0.399	-78	-130.2	

Question Two-

Octane (C_8H_{18}) is one of the main components of petrol fuel. The structure of Octane is

Octane can be fully combust in excess oxygen (O₂) forming carbon dioxide (CO₂) and water (H₂O)

 $C_8H_{18} + 12\frac{1}{2}O_2 \rightarrow 8CO_2 + 9H_2O$

Using the bond energy provided below, calculate the enthalpy of the above reaction

C-C 346 kJmol ⁻¹	0=0 494 kJmol ⁻¹	C-H 414	kJmol⁻¹	O-H 464 kJmol ⁻¹	C=O 724 kJmol ⁻¹
Bond in reactant		Bond in product			
7 × C-C + 18 × C-H + 12.5 × O=O		16 × C=O + 18 × O-H			
7 × 346 + 18 × 414 + 12.5 × 494 = 16049 kJmol ⁻¹		16 × 724 + 18 × 464 = 19936 kJmol ⁻¹			

 $\Delta H = \Sigma BE_{reactant} - \Sigma BE_{product} = 16049 - 19936 = -3887$

From the calculation using the data give, the enthalpy is estimated to be -3890 kJmol⁻¹