
Worksheet 5 Name ____ Chemistry 2.4

Question One- Complete the table below

Name (and formula)	Lewis Diagram	Bonds contain
Ammonia (NH₃)	н—іі—н 	3 × N-H
Sulfur dioxide (SO ₂)	: ö.— s:— o.:	1 × S-O 1 × S=O
Sulfur trioxide (SO₃)	: Ö = O;	2 × S-O 1 × S=O
Hydrogen sulfide (H₂S)	H S:	2 × S-H
Methane (CH₄)	H	4 × C-H
Water (H₂O)	H	2 × O-H
Nitrogen gas (N ₂)	:N <u>===</u> N:	1 × NEN
Oxygen gas (O₂)	;̇o==o;̇:	1 × O=O

 $N_2 + 3H_2 = 2 NH_3$ $\Delta H = -93 \text{ kJmol}^{-1}$ NEN 945 kJmol⁻¹ H-H 436 kJmol⁻¹

a) Using the information above, calculate the bond enthalpy of N-H

Bond energy reactant = N-N + $3 \times H-H = 945 + 3 \times 436 = 2253 \text{ kJmol}^{-1}$ Bond energy product = $6 \times N-H$ $2253 - 6 \times N - H = -93 \text{ kJmol}^{-1}$ $6 \times N-H = 2346 \text{ kJmol}^{-1}$ $N-H = 391 \text{ kJmol}^{-1}$

The bond enthalpy of N-H is 391 kJmol⁻¹

b) Calculate how much energy will released when 500 kg of nitrogen gas is fully turned to ammonia

The molar mass for N₂ is 28 gmol⁻¹ Amount of nitrogen = $500000 \text{ g} \div 28 \text{ gmol}^{-1} = 17857.14... \text{ mol of N}_2$ N_2 : reaction = 1:1 Amount of reaction = 17857.14... mol 93 kJmol⁻¹ × 17857.14... mol = 1660714.29... kJ

or

 $1.66 \times 10^{6} \text{ kJ}$

 1.66×10^6 kJ of energy is released when 500 kg of nitrogen gas is fully turned to ammonia.

