\qquad
Question One- Complete the table

Name	Structure	Optical isomers (Y/N)
Example: Pentan-2-one		No
4-methyl pentanal		No
3-methyl Butan-1-ol		No
Pentan-2-ol		Yes
2-methyl propan-2-ol		No

Question Two- Discuss a series of chemical tests to distinguish all the chemicals on the list above
Take a small amount of sample of each substance and reacts them with Lucas reagent $\left(\mathrm{HCl} / \mathrm{ZnCl}_{2}\right)$
For 2-methyl propan-2-ol, it will turn cloudy quickly due to the substitution reaction with $\mathrm{HCl} / \mathrm{ZnCl}{ }_{2}$ forming insoluble 2-chloro-2-methyl propane

Similarly, pentan-2-ol will also react and turn the mixture cloudy, however, it takes around 5-10 minutes under warm water bath

No observation for the remaining, Pentan-2-one, 4-methyl pentanal and 3-methyl butan-1-ol
Take some sample of the remaining substances and react with $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$in a warm water bath
4-methyl pentanal and 3-methyl butan-1-ol will result in a colourless mixture due to the reduction of $\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$

Whole Pentan-2-one remains unchanged
Finally react 4-methyl pentanal and 3-methyl butan-1-ol with Tollens reagent, $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
for 4-methyl pentanal, a grey deposit will form due to the reduction of $\mathrm{Ag}^{+} \rightarrow \mathrm{Ag}$ while no observation for butan-1-ol

