Chemistry 2.1

\qquad MR/ YP

Question 1

Calculate the concentration of each of the following underlined solutions given that:
a) 25 mL of a solution of HNO_{3} reacts exactly with 20.4 mL of $0.20 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Na}_{2} \mathrm{CO}_{3}$ $0.20 \mathrm{molL}^{-1} \times 0.0204 \mathrm{~L}=0.00408 \mathrm{~mol}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad$ ratio $\mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{HNO}_{3}=1: 2$
$0.00408 \mathrm{~mol} \times 2=0.00816 \mathrm{~mol} \quad 0.00816 \mathrm{~mol} \div 0.025 \mathrm{~L}=\underline{\underline{0.326 ~ \mathrm{molL}^{-1}} \text { is the concentration of } \mathrm{HNO}_{3}}$
b) 13.4 mL of a solution of KOH reacts exactly with 10 mL of $0.05 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2} \mathrm{SO}_{4}$ $0.05 \mathrm{molL}^{-1} \times 0.01 \mathrm{~L}=0.0005 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{SO}_{4} \quad$ ratio $\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{KOH}=1: 2$ $0.0005 \mathrm{~mol} \times 2=0.001 \mathrm{~mol} \quad 0.001 \mathrm{~mol} \div 0.0134 \mathrm{~L}=\underline{0.0746 \mathrm{molL}^{-1}}$ is the concentration of KOH
c) 16.4 mL of a solution of $\underline{\mathrm{H}}_{2} \underline{\mathrm{SO}}_{4}$ reacts exactly with 20 mL of $0.04 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Na}_{2} \mathrm{CO}_{3}$ $0.04 \mathrm{molL}^{-1} \times 0.02 \mathrm{~L}=0.0008 \mathrm{~mol}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad$ ratio $\mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{H}_{2} \mathrm{SO}_{4}=1: 1$

d) 9.8 mL of a solution of HBr reacts exactly with 10 mL of $0.25 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$ $0.25 \mathrm{molL}^{-1} \times 0.01 \mathrm{~L}=0.0025 \mathrm{~mol}$ of $\mathrm{NaOH} \quad$ ratio $\mathrm{NaOH}: \mathrm{HBr}=1: 1$ $0.0025 \mathrm{~mol} \times 1=0.0025 \mathrm{~mol} \quad 0.0025 \mathrm{~mol} \div 0.0098 \mathrm{~L}=\underline{\underline{0.255} \mathrm{molL}^{-1} \text { is the concentration of } \mathrm{HBr}}$
e) 13.8 mL of a solution of NaOH reacts exactly with 20 mL of $0.15 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HNO}_{3}$ $0.15 \mathrm{molL}^{-1} \times 0.02 \mathrm{~L}=0.003 \mathrm{~mol}^{2} \mathrm{HNO}_{3} \quad$ ratio $\mathrm{HNO}_{3}: \mathrm{NaOH}=1: 1$ $0.003 \mathrm{~mol} \times 1=0.003 \mathrm{~mol} \quad 0.003 \mathrm{~mol} \div 0.0138 \mathrm{~L}=\underline{\underline{0.217} \mathrm{molL}^{-1} \text { is the concentration of } \mathrm{NaOH}}$

Question 2

Mr. Yung used standard solution of $0.132 \mathrm{molL}^{-1}$ sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ titrated against with 20.0 mL of unknown HNO_{3} solution. The following table is experimental result.

Trial	\#1	\#2	\#3	\#4
Titre (mL)	$\mathbf{2 3 . 4 2}$	22.56	22.55	22.56

The equation between sodium carbonate and nitric acid is shown below

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaNO}_{3}+\mathrm{CO}_{2}
$$

Average $(22.56+22.55+22.56) \div 3=22.556 \ldots \mathrm{~mL}=0.022556 \ldots \mathrm{~L}^{2}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $0.132 \mathrm{molL}^{-1} \times 0.022557 \ldots \mathrm{~L}=0.002977 \ldots \mathrm{~mol} \quad$ ratio $\mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{HNO}_{3}=1: 2$ $0.002977 \mathrm{~mol} \times 2=0.005955 \mathrm{~mol} \quad 0.005955 \mathrm{~mol} \div 0.02 \mathrm{~L}=\underline{\underline{0.298} \mathrm{molL}^{-1} \text { is the concentration of } \mathrm{NHO}_{3}}$

Question 3

Mr. Macann conducted the same experiment but has a different result. Calculate the concentration from this data.

Trial	\#1	\#2	\#3	\#4
Titre (mL)	22.16	21.90	22.03	20.89

Average $(21.9+22.03+22.16) \div 3=22.03 \mathrm{~mL}=0.02203 . . . \mathrm{L}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$0.132 \mathrm{molL}^{-1} \times 0.02203 \ldots \mathrm{~L}=0.002908 \ldots \mathrm{~mol} \quad$ ratio $\mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{HNO}_{3}=1: 2$ $0.002908 \mathrm{~mol} \times 2=0.005816 \mathrm{~mol} \quad 0.005816 \mathrm{~mol} \div 0.02 \mathrm{~L}=\underline{0.291} \mathrm{molL}^{-1}$ is the concentration of NHO_{3}

