Chemistry 2.1

Worksheet 3

Name _____ MR/ YP

Question 1

Calculate the concentration of each of the following <u>underlined</u> solutions given that:

a) 25 mL of a solution of HNO₃ reacts exactly with 20.4 mL of 0.20 mol L⁻¹ Na₂CO₃

 $0.20 \text{ molL}^{-1} \times 0.0204 \text{ L} = 0.00408 \text{ mol of } \text{Na}_2\text{CO}_3$ ratio Na_2CO_3 : HNO₃ = 1:2

 $0.00408 \text{ mol} \times 2 = 0.00816 \text{ mol}$ $0.00816 \text{ mol} \div 0.025 \text{ L} = 0.326 \text{ molL}^{-1} \text{ is the concentration of HNO}_3$

b) 13.4 mL of a solution of KOH reacts exactly with 10 mL of 0.05 mol L⁻¹ H₂SO₄

 $0.05 \text{ molL}^{-1} \times 0.01 \text{ L} = 0.0005 \text{ mol of } H_2SO_4$ ratio H_2SO_4 : KOH = 1 : 2

 $0.0005 \text{ mol} \times 2 = 0.001 \text{ mol}$ $0.001 \text{ mol} \div 0.0134 \text{ L} = 0.0746 \text{ mol}\text{L}^{-1} \text{ is the concentration of KOH}$

c) 16.4 mL of a solution of H₂SO₄ reacts exactly with 20 mL of 0.04 mol L⁻¹ Na₂CO₃

 $0.04 \text{ molL}^{-1} \times 0.02 \text{ L} = 0.0008 \text{ mol of Na}_2\text{CO}_3$ ratio Na $_2\text{CO}_3 : \text{H}_2\text{SO}_4 = 1 : 1$

0.0008 mol × 1 = 0.0008 mol 0.0008 mol ÷ 0.0164 L = 0.0488 mol^{-1} is the concentration of H₂SO₄

d) 9.8 mL of a solution of HBr reacts exactly with 10 mL of 0.25 mol L-1 NaOH

 $0.25 \text{ molL}^{-1} \times 0.01 \text{ L} = 0.0025 \text{ mol of NaOH}$ ratio NaOH : HBr = 1 : 1

 $0.0025 \text{ mol} \times 1 = 0.0025 \text{ mol}$ $0.0025 \text{ mol} \div 0.0098 \text{ L} = 0.255 \text{ mol}^{-1} \text{ is the concentration of HBr}$

e) 13.8 mL of a solution of NaOH reacts exactly with 20 mL of 0.15 mol L⁻¹ HNO₃

 $0.15 \text{ molL}^{-1} \times 0.02 \text{ L} = 0.003 \text{ mol of HNO}_3$ ratio HNO₃: NaOH = 1:1

 $0.003 \text{ mol} \times 1 = 0.003 \text{ mol}$ $0.003 \text{ mol} \div 0.0138 \text{ L} = 0.217 \text{ mol}^{-1} \text{ is the concentration of NaOH}$

Question 2

Mr. Yung used standard solution of 0.132 molL^{-1} sodium carbonate (Na₂CO₃) titrated against with 20.0 mL of unknown HNO₃ solution. The following table is experimental result.

Trial	#1	#2	#3	#4
Titre (mL)	23.42	22.56	22.55	22.56

The equation between sodium carbonate and nitric acid is shown below

 $Na_2CO_3 + 2 HNO_3 \rightarrow H_2O + 2 NaNO_3 + CO_2$

Average $(22.56 + 22.55 + 22.56) \div 3 = 22.556... \text{ mL} = 0.022556... \text{ L of Na}_2\text{CO}_3$

 $0.132 \text{ molL}^{-1} \times 0.022557... \text{ L} = 0.002977... \text{ mol}$ ratio Na₂CO₃: HNO₃ = 1:2

 $0.002977 \text{ mol} \times 2 = 0.005955 \text{ mol}$ $0.005955 \text{ mol} \div 0.02 \text{ L} = 0.298 \text{ molL}^{-1} \text{ is the concentration of NHO}_3$

Question 3

Mr. Macann conducted the same experiment but has a different result. Calculate the concentration from this data.

Trial	#1	#2	#3	#4
Titre (mL)	22.16	21.90	22.03	20.89

Average $(21.9 + 22.03 + 22.16) \div 3 = 22.03 \text{ mL} = 0.02203... \text{ L of Na}_2\text{CO}_3$

 $0.132 \text{ molL}^{-1} \times 0.02203... \text{ L} = 0.002908... \text{ mol}$ ratio $Na_2CO_3 : HNO_3 = 1 : 2$

 $0.002908 \text{ mol} \times 2 = 0.005816 \text{ mol}$ $0.005816 \text{ mol} \div 0.02 \text{ L} = 0.291 \text{ molL}^{-1} \text{ is the concentration of NHO}_3$