Chemistry 2.1

Worksheet 4

Name _____ MR/ YP

Question 1

Oxalic acid reacts with sodium hydroxide. The equation for the reaction is:

$$C_2H_2O_4 + 2NaOH \rightarrow C_2O_4Na_2 + 2H_2O$$

oxalic acid + sodium hydroxide → sodium oxalate + water

Calculate the $maximum\ mass$ of sodium oxalate, $C_2O_4Na_2$, which could be made from 17.0g of sodium hydroxide.

$$M(C) = 12.0 \text{ g mol}^{-1} M(H) = 1.00 \text{ g mol}^{-1} M(O) = 16.0 \text{ g mol}^{-1} M(Na) = 23.0 \text{ g mol}^{-1}$$

Molar mass for NaOH = $23 + 16 + 1 = 40 \text{ gmol}^{-1}$

amount of NaOH 17 g \div 40 gmol⁻¹ = 0.425 mol

 $NaOH : C_2O_4Na_2 = 2 : 1$

amount of $C_2O_4Na_2 = 0.425 \text{ mol} \div 2 = 0.2125 \text{ mol}$

Molar mass for $C_2O_4Na_2 = 12 \times 2 + 16 \times 4 + 23 \times 2 = 134 \text{ gmol}^{-1}$

 $0.2125 \text{ mol} \times 134 \text{ gmol}^{-1} = 28.5 \text{ g}$

The maximum mass of sodium oxalate formed is 28.5 g

Question 2

What mass of CO₂ is produced in the complete combustion of 34.5 g of ethanol according to the equation?

$$C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O$$

$$M(C) = 12.0 \text{ g mol}^{-1} M(H) = 1.00 \text{ g mol}^{-1} M(O) = 16.0 \text{ g mol}^{-1}$$

Molar mass for ethanol = $12 \times 2 + 1 \times 6 + 16 = 46 \text{ gmol}^{-1}$

amount of ethanol = $34.5 \text{ g} \div 46 \text{ gmol}^{-1} = 0.75 \text{ mol}$

ethanol : $CO_2 = 1 : 2$

amount of $CO_2 = 0.75 \text{ mol } \times 2 = 1.5 \text{ mol}$

Molar mass for $CO_2 = 12 + 16 \times 2 = 44 \text{ gmol}^{-1}$

 $1.5 \text{ mol} \times 44 \text{ gmol}^{-1} = 66.0 \text{ g}$

The mass of CO₂ is produced is 66.0 g