Chemistry 2.1

Worksheet 8

Name _____ MR/ YP

Question 1- Many ionic crystals contain water molecules. These salts are called hydrated crystals.

Most hydrated crystals such as Cobalt chloride can be dehydrated by thermo decomposition

$$CoCl_2 \cdot xH_2O \rightarrow CoCl_2 + xH_2O$$

Using the following information and steps, determine the water of crystallisation of CoCl₂ (find x)

Experimental results

Mass of hydrated crystals before it was heated = 4.29 gMass after heated (dehydrated) = 2.34 g

Determine the amount of anhydrous CoCl₂

Molar mass of $CoCl_2$ is $58.9 + 35.5 \times 2 = 129.9 \text{ gmol}^{-1}$

Amount of $CoCl_2$ is 2.34 g ÷ 129.9 gmol⁻¹ = 0.018014 mol

• Determine the amount of water loss

Mass of hydrated – Mass of anhydrous = Mass of water loss =4.29 – 2.34 = 1.95 g

Molar mass of H₂O is 18 gmol⁻¹

Amount of H_2O is 1.95 g ÷ 18 gmol⁻¹ = 0.108333 mol

• Determine the molar ratio

The molar ratio between $CoCl_2$: H_2O is 0.018014: $0.108333 = \frac{0.018014}{0.018014}$: $\frac{0.10833}{0.018014}$ = 1 : 6

Therefore the formula for hydrated cobalt chloride is CoCl₂ . 6 H₂O

Question Two

Using the steps above, determine the water of crystallisation of Magnesium sulphate $MgSO_4$. $xH_2O \rightarrow MgSO_4 + xH_2O$

Experimental results

Mass of hydrated crystals before it was heated = 1.40 g

Mass after heated (dehydrated) = 0.68 g

• Determine the amount of anhydrous MgSO₄

Molar mass of MgSO₄ is $24.3 + 32 + 16 \times 4 = 120.3 \text{ gmol}^{-1}$

Amount of MgSO₄ is $0.68 \text{ g} \div 120.3 \text{ gmol}^{-1} = 0.005653 \text{ mol}$

• Determine the amount of water loss

Mass of hydrated – Mass of anhydrous = Mass of water loss =1.40 – 0.68 = 0.72 g Molar mass of H_2O is 18 $gmol^{-1}$

Amount of H_2O is 0.72 g ÷ 18 gmol⁻¹ = 0.04 mol

• Determine the molar ratio

The molar ratio between MgSO₄: H₂O is $0.005653:0.04 = \frac{0.005653}{0.005653}: \frac{0.04}{0.005653} = 1:$

Therefore the formula for hydrated cobalt chloride is $MgSO_4$. 7 H_2O