SAMPLE ASSESSMENT SCHEDULE

Chemistry 91164 (2.4): Demonstrate understanding of bonding, structure, properties and energy changes

Assessment Criteria

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding involves describing, identifying, naming, drawing, calculating, giving an account of bonding, structure and properties of different substances and the energy involved in physical and chemical changes. This requires the use of chemistry vocabulary, symbols and conventions.	Demonstrate in-depth understanding involves making and explaining links between the bonding, structure and properties of different substances and the energy involved in physical and chemical changes. This requires explanations that use chemistry vocabulary, symbols and conventions.	Demonstrate comprehensive understanding involves elaborating, justifying, relating, evaluating, comparing and contrasting, or analysing links between bonding, structure and properties of different substances and the energy involved in physical and chemical changes. This requires the consistent use of chemistry vocabulary, symbols and conventions
		and conventions.

Evidence Statement

One	Expected Coverage	Achievement	Merit	Excellence
One (a) (b)	Expected CoverageSee Appendix One.The central atom in SO2 has three regions of electron density (sets of electrons) around it. Two of these are bonding and one is non bonding. The non bonding pair contributes to the shape but is not considered part of the shape. The 	Achievement THREE of the following: • in (a) TWO Lewis structures correct OR TWO shapes correct (or equivalent) • in (b) THREE sets of electrons around S (in SO ₂) OR FOUR sets of electrons around S (in H ₂ S) • in (c) C-CI bond is polar • in (c) bonds in CHCl ₃ are arranged tetrahedrally.	Merit In (b) the arrangement of electrons around the central atom is used to explain the shape of the molecule AND in (c) the difference in electro negativities are used to explain the CHCl ₃ is a polar molecule.	Excellence The shape of the molecule (in (b) and (c)) and the polarity of the molecule (in (b)) are explained and justified in terms of the regions of electron density, electron repulsion, bond polarity (in (c)) and symmetry/ asymmetry.
(c)	109°. The molecule of $CHCl_3$ is polar.			

	The molecule CH ₂ Cl ₂ is polar. CHCl ₃ and CH ₂ Cl ₂ have four regions of electron density around the central C atom. These are all bonding pairs of electrons so the shape of both molecules is tetrahedral.		
	The C-CI bond is polar due to the difference in electronegativity between C and CI. The C-CI bonds are more polar than the C- H bond as the electronegativity of CI is greater than the electronegativity of C and H. The bonds are arranged symmetrically in tetrahedral positions around the C atom.		
	Because the bonds are arranged in tetrahedral positions and the C– CI bonds are polar, both CH_3CI and CH_2CI_2 are polar molecules.		
NØ	No response or does not address the question.		
N1	Provides some writing but does not fulfil any statement from the Achievement criteria column.		
N2	Any ONE statement from the Achievement criteria column.		
A3	Any TWO statements from the Achievement criteria column.		
A4	Any THREE statements from the Achievement criteria column.		
M5	Any ONE statement from the Merit criteria column.		
M6	Gives BOTH statements from the Merit criteria column.		
E7	Only minor error – omission or additional information – from the Excellence criteria column.		
E8	All the evidence from the Excellence criteria column.		

Two	Expected Coverage	Achievement	Merit	Excellence
(a)	See Appendix Two.	THREE of the	In (b) ONE	In (b) the mass of
(b) (i)	n(O ₂) = 15.4/32 = 0.481 mol Energy released = 0.481 × 1200 = 578 kJ	 following: in (a) TWO solids described in terms of the type of solid 	calculation correct. AND in (c) a property of magnesium or	magnesium is calculated AND in (c) the structure of magnesium and
(b) (ii)	$M(Mg) = 24.0 \text{ g mol}^{-1}$ 1200 kJ released by 2 mol Mg 98.2 kJ released by 98.2 × 2/1200 mol Mg = 0.164 mol	 type of solid and the type of particle in (b) ONE step correct for either 	magnesium oxide linked to the particles in solid and the forces between the	magnesium oxide, the bonding between particles, the mobility/non mobility of particles

	m(mg) $0.164 \times 24.0 = 3.93 \text{ g}$	calculation	particles.	and/or the strength
(c)	 Magnesium atoms are held together in a 3–D lattice by metallic bonding in which valence electrons are attracted to the nuclei of neighbouring atoms. Magnesium is malleable because the force of attraction between the valence electrons and the nuclei of the magnesium atoms is non-directional. This means that the layers can slide over each other without breaking the metallic bond / disrupting the lattice structure. Magnesium does not dissolve in water because the metallic bonds are too strong to be broken by the attraction to the water molecules. Magnesium oxide is made up of positive magnesium ions and negative oxide ions held together by electrostatic attractions in a 3–D lattice. Magnesium oxide does not conduct electricity as a solid as these ions are not free to move. When molten the ions are free to move and carry the charge so magnesium oxide conducts electricity. 	 in (c) structure of magnesium (or a metal) described in (c) structure of magnesium oxide described. 	OR In (c) 2 properties of magnesium or magnesium oxide linked to the particles in the solid and forces between the particles.	of the forces between particles are used to justify the properties of the substances.
NØ	No response or does not address the que	estion.		
N1	Provides some writing but does not fulfil any statement from the Achievement criteria column.			
N2	Any ONE statement from the Achievement criteria column.			
A3	Any TWO statements from the Achievement criteria column.			
A4	Any THREE statements from the Achievement criteria column.			
M5	Any ONE statement from the Merit criteria column.			
M6	Gives BOTH statements from the Merit criteria column.			
E7	Only minor error – omission or additional information – from the Excellence criteria column.			
E8	All the evidence from the Excellence criteria column.			

Three	Expected Coverage	Achievement	Merit	Excellence
(a)	Endothermic because energy is	THREE of the	In (b) reason for	In (c) the structure
	absorbed to break the attractive forces		why a reaction is	of SiO ₂ and Br ₂ , the

(b) (i)Bonds broken between H-H and between O-Olinked to the endothermic reactionlinked to the energy requiredstrength of the forces between particles used to justify the differen in (c) the melting point of SiO2 and Br2 linked to the in solubility (and(b) (ii)Bond breaking is endothermic as energy is required to separate the atoms in a bond.Inked to the endothermic described in terms of forcesInked to the energy requiredstrength of the forces between particles used to justify the differen in melting points and the differen in solubility (and		between the molecules in the solid state.	following:	exothermic or endothermic is	bonding between particles, the																												
(b) (ii) Bond breaking is endothermic as energy is required to separate the atoms in a bond. (b) (ii) Bond breaking is endothermic as energy is required to separate the atoms in a bond. (c) (ii) Bond breaking is endothermic as point of SiO ₂ and Br ₂ linked to the particles in solid (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	(b) (i)	Bonds broken between H-H and between O-O Bonds formed between H-O	endothermic reaction described in terms of forces	linked to the energy required AND in (c) the melting	strength of the forces between particles used to justify the difference																												
Bond forming is exothermic as energy is released as bonds form. Bond formed In (b) bonds broken and formed In (b) bonds In	(b) (ii)	Bond breaking is endothermic as energy is required to separate the atoms in a bond. Bond forming is exothermic as energy is released as bonds form.	 between particles in (b) bonds broken and formed 	between particles • in (b) bonds broken and formed	between particles • in (b) bonds broken and formed	between particlespoint of SiO2 and Br2 linked to the• in (b) bonds broken and formedparticles in solid and the bonding.	between particles • in (b) bonds broken and formed	between particlespoint of SiO2 and Br2 linked to the• in (b) bonds broken and formedparticles in solid and the bonding.	between particlespoint of SiO2 and Br2 linked to the• in (b) bonds broken and formedparticles in solid and the bonding.	between particles • in (b) bonds broken and formed	between particlespoint of SiO2 and Br2 linked to the particles in solid and the bonding.in ar in in ar• in (b) bonds broken and formedand the bonding.in ar ar in ar ar	between particlespoint of SiO2 and Br2 linked to the• in (b) bonds broken and formedparticles in solid and the bonding.	between point of particles Particles Particles particles particles particles point of Br ₂ linke particles and the formed	between particlespoint of SiO2 and Br2 linked to the particles in solid and the bonding.in r and in s• in (b) bonds broken and formedparticles in solid and the bonding.in r and and and the bonding.	between particlespoint of SiO2 and Br2 linked to the particles in solid and the bonding.in m and in solid links amo• in (b) bonds broken and formedand the bonding.in solid and the bonding.	between particlespoint of SiO2 and Br2 linked to the particles in solid and the bonding.in n and in s link and ser	between particlespoint of SiO2 and Br2 linked to the particles in solid and the bonding.in n and in s link and sen• in (b) bonds broken and formedparticles in solid and the bonding.in n and sen	between particlespoint of SiO2 and Br2 linked to the particles in solid and the bonding.In r and in solid link and set• in (b) bonds broken and formedpoint of SiO2 and Br2 linked to the particles in solid and the bonding.In r and and set	between particlespoint of SiO2 and Br2 linked to the• in (b) bonds broken and formedparticles in solid and the bonding.	between particles • in (b) bonds broken and formed	between particlespoint of SiO2 and Br2 linked to the particles in solid and the bonding.in m and in solid links• in (b) bonds broken and formedparticles in solid and the bonding.in m and in solid and the bonding.	between particles • in (b) bonds broken and formed	between particlespoint of SiO2 and Br2 linked to the particles in solid and the bonding.• in (b) bonds broken and formedand the bonding.	between particles • in (b) bonds broken and formed	between particlespoint of SiO2 and Br2 linked to the particles in solid and the bonding.In mer and the in solid links t amou separ	between point of SiO2 and and ti particles Br2 linked to the and ti • in (b) bonds particles in solid links broken and and the bonding. amou formed separticles	between point of SiO ₂ and particles Br ₂ linked to the particles in solid broken and formed	between particlespoint of SiO2 and Br2 linked to the particles in solid and the bonding.in m and in solid and in solid and the bonding.	between particles • in (b) bonds broken and formed	in melting points and the differences in solubility (and links the different amount of energy to separate particles to			
is released as bollins form. formed identified separate particle melting point). (c) Bonding in Br ₂ is weak intermolecular forces of attraction. in (b) correctly states the endothermic and exothermic and exoth	(c)	 Bonding in SiO₂ is covalent bonds Bonding in Br₂ is weak intermolecular forces of attraction. SiO₂ is made up of Si and O atoms. Each atom is covalently bonding to four others in a tetrahedral arrangement forming a covalent network solid. The covalent bonds are very strong and: (for melting point) require a large amount of energy to overcome them, meaning SiO₂ has a high melting point (for solubility) are too strong to be broken by the attraction to the water molecules. Br₂ is a molecular substance made up of molecules. There are weak intermolecular forces holding the molecules together and: (for melting point) require only a small amount of energy to overcome them meaning Br₂ has a low melting point 	formed identified in (b) correctly states the endothermic and exothermic processes in (c) EITHER bonding OR structure of SiO ₂ described in (c) EITHER bonding OR structure of Br ₂ described.	OR 3 properties of SiO2 or Br2 linked to the particles in the solid and the bonding.	separate particles to melting point).																												

NØ	No response or does not address the question.
N1	Provides some writing but does not fulfil any statement from the Achievement criteria column.
N2	Any ONE statement from the Achievement criteria column.
A3	Any TWO statements from the Achievement criteria column.
A4	Any THREE statements from the Achievement criteria column.
M5	Any ONE statement from the Merit criteria column.
M6	Gives BOTH statements from the Merit criteria column.
E7	Only minor error – omission or additional information – from the Excellence criteria column.
E8	All the evidence from the Excellence criteria column.

Appendix One: Question One (a)

Molecule	Lewis structure	Diagram of Shape	Name of Shape
PH ₃	H - P - H H	$H = \frac{P}{H}$ H	Trigonal pyramid
CO ₂	O = C = O OR $O : C : O$	0 — C — O	Linear
H ₂ CO	H = OR $H = OR$ $H = C = O$ $H = OR$ $H = OR$	H > C - O	Trigonal planar

Appendix Two: Question Two (a)

Solid	Type of solid	Type of particle
Mg (magnesium)	metallic	atom
O ₂ (oxygen)	molecular	molecule
MgO (magnesium oxide)	ionic	ions