Assessment Schedule 2009 for AS 90698 Chemistry 3.5- Describe aspects of organic chemistry

Question number	Evidence	Achievement	Merit	Excellence
One (a)	$\begin{array}{c} H_{3}C-CH_{2}CH_{2}CH_{2}C\\ i) \\ O-CH_{2}-CH_{2}-CH_{3}\\ \\ H_{3}C-CH_{2}CH_{2}CH_{2}CH-C\\ ii) \\ H_{3}C-CH-CH_{2}-C\\ \\ iii) \\ NH_{2} \\ OH \\ \\ H_{3}C-CH_{2}-C\\ \\ iv) \\ \end{array}$	3 correct		
One	i) propylethanoate ii) propanamide	3 correct		
(b)	iii) pentan-2-one iv) 3-chlorobut-1-ene			
Two (a)	Add water to both, ethanoyl chloride will react violently to produce a solution/fumes that turn blue litmus red. Chloroethane is insoluble in water and will not change the colour of blue litmus. H ₃ C-C H ₂ O H ₂ O H ₃ C-C OH HCl Acids formed turn blue litmus red.	Test distinguishing one pair correctly described in full OR	Tests for both pairs correctly described with appropriate observations.	Tests for both pairs correctly described with appropriate observations And Links made to reactions occurring
Two (b)	Add Tollens, Fehlings or Benedicts reagents. Only butanal (aldehyde) will react and reduce the reagents. Tollens reagent will give a silver mirror when warmed with butanal and remain colourless with butan-1-ol. Benedicts and Fehlings solution will change from blue solution to a brick red precipitate when warmed with butanal but will remain blue with butan-1-ol. H ₃ C-CH ₂ -CH ₂ -C OH ₂ -CH ₂ -C OH ₂ -CH ₂ -CH ₂ -C OH ₂ -CH ₂ -CH ₂ -C OH ₂ -CH ₂ -C OH ₂ -CH ₂ -C OH ₂ -C O	Test correctly identified by name or reagent for both pairs of compounds. (Equations not required)	(Equations not required)	at functional groups for both pairs. (Using equations or formulae)

Three	H ₂ N-CH ₂ -CH ₂ -CH ₂ -NH ₂	1 structure	2 correct	
(a) (i)	$H_2N-CH_2-CH_2-CH_2-NH_2$ O O O II $CI^-C-CH_2-CH_2-C$	correct		
	C_{1} C-CH ₂ -CH ₂ -CC			
	CI			
Three	A polymer is a long chain molecule formed	1 bullet point	Both bullet	
(ii)	when many molecules or units (ie monomers) link together.	of the	points	
		explanation	correct	
	Polyamide(nylon) chains are formed by	correct		
	condensation with the loss of HCl at each amide linkage.			
Three	OH	Structure	Correct	
(b)		backbone	structure	
(8)		contains nine	drawn	
		carbons but		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	minor error		
TO I	SH		D d	
Three	Н С	One isomer	Both isomers	
(c)		drawn correctly with	drawn correctly.	
	H_3C H C' C' C C' C C' C C' C C C' C	3-d	conechy.	
	H ² COOH H ₃ C ² COOH	arrangement		
	NH_2 NH_2	of groups		
		around chiral		
		C.		
Three	Differences:	Two	Description	
(d)	Solutions of enantiomers rotate plane polarised light in opposite directions. Different	differences or	recognises	
	chemical reactions with optically active molecules.	similarities or	similarities	
	Similarities:	one of each described	and diffs in	
	Same physical properties e.g. same bp, mp, density, polarity. Very similar chemical properties with optically inactive molecules as same bonds	correctly.	chemical and	
	broken.	conechy.	physical properties	
	oronon.		and rotation	
			of plane	
			polarised	
			light.	

Γ		1	T	
Three		(e) or (f)	Both (e) and	
(e)	h h h h	correct	(f) correct.	
	НО НО			
	Н Ф Н Ф			
	H O H O C=O C=O H H			
and	H H			
	In an addition polymer the monomer units all originally contain double bonds which			
(f)	undergo addition reactions to form long chains. The polymer chain is the only product			
(1)	formed/no small molecules are removed.			
	Torried, no smair morecules are removed.			
		1	- ·	A 11
Four	A. $H_3C-CH_2-CH_2-CI$ B. $H_3C-CH_2-CH_2-OH$ C. $H_3C-CH=CH_2$ D. H_3C-CH_2-C' OH H_3C-CH_2-C' O- $CH_2-CH_2-CH_3$ E. H_3C-CH_2-C' NH ₂ F. NH_2	4 correct	5 correct	All correct
(a)	A . $H_3C-CH_2-CH_2$			
	B H ₂ C-CH ₂ -CH ₂ -OH			
	B. $H_3C-CH_2-CH_2-OH$			
	$C.$ $H_3C-CH=CH_2$			
	0			
	//			
	H_3C-CH_2-C			
	D. OH			
	<u>O</u>			
	E . $O-CH_2-CH_3$			
	0			
	$H_{\circ}C - CH_{\circ} - C'$			
	F. NH ₂			

Four (b)	H ₃ C-CH-CH ₃ Reaction of G with KOH(aq) will produce OH a secondary alcohol Reaction of the secondary alcohol with concentrated sulfuric acid will produce the same alkene C as when B reacts. Reaction of the secondary alcohol with acidified potassium dichromate will H ₃ C-C-CH ₃ produce a ketone O which will not show acidic properties and will not turn blue litmus red. No further reactions will occur as the ketone will not react with an alcohol (to undergo esterification.)	Two bullet points correct	Correct structures and some discussion	All points discussed with clarity
Five (a)	H C C C C O Na + H ₃ C O H H O H O H	One answer correct	2 answers correct	All correct
(b) (c)	(Base) hydrolysis $ \begin{array}{cccccccccccccccccccccccccccccccccc$			

ſ	Five	Reflux is used in this preparation as heating will increase the rate of reaction and none	Description	Both	Complete
	(d)	of the organic material will be lost by evaporation.	of the process	processes	explanation of both
		The condenser is attached to the top of the flask and water passing through it cools the	of reflux or	described in	processes including
		vapour and returns it to the reaction flask. (Or appropriately labelled diagram).	distillation	relation to	arrangement of
				the	equipment/diagrams.
		Distillation is used to separate the alcohol from the salt (sodium salicylate) as the		preparation	
		alcohol will have a lower boiling point.		of salicylic	
		The condenser is attached to the side of the reaction flask so that the vapour formed at		acid.	
		the appropriate temperature will condense and drip out into an appropriate container.			
		(Or appropriately labelled diagram).			

Judgement statement:

Achievement	Achievement with Merit	Achievement with Excellence
SEVEN questions answered correctly.	NINE questions answered correctly including at least SIX at Merit level.	TEN questions answered correctly including at least THREE at Excellence level and FIVE at Merit level.
Minimum of 7 x A.	Minimum of $6 \times M + 3 \times A$.	Minimum of $3 \times E + 5 \times M + 2 \times A$.