Assessment schedule 2012 AS 91164 [Chemistry 2.4] Demonstrate understanding of bonding, structure and energy changes.

Question	Expected	l coverage	Achievement	Achievement with Merit	Achievement with Excellence
ONE (a)	Molecule Hydrogen sulfide Phosphorus trichloride Methanal	Lewis structure • S • H H · Cl: · Cl: · Cl: · O • · C. H H	Two correct		
(b)	(i) Trigonal Pyramidal(ii) Linear(iii)Tetrahedral		• Two correct		
(c)	All three of the N-H bond bonds as the nitrogen atom than the hydrogen atom a attraction for the bonding molecule is trigonal pyran bond dipoles do not cance the molecule is polar. In carbon dioxide the two the oxygen atom is more	m is more electronegative nd so has a greater electrons. As the midal in shape the three el each other out and so o C=O bonds are polar as	 Recognises that the N-H bond is polar Recognises that the C=O bond is polar 	 Correct explanation for the ammonia molecule Correct explanation for the carbon dioxide molecule 	• Correct explanation for both molecules.

	carbon atom. However in this case, since the molecule is linear, the two bond dipoles cancel each other out so the molecule is non-polar		
(d)	There are four areas of electron density around the central sulfur atom. These four areas will repel each other. They will take up a position so as to be as far away from each other as possible. The four areas of electrons will occupy the tetrahedral position. Since the molecule has only two bonding pairs its shape will be v-shaped or bent.	• Explains that there are 4 pairs of electrons around the central atom	• Full discussion of how the shape is derived

NO	N1	N2	A3	A4	M5	M6	E7	E8
No response	Describes ONE	Describe TWO	Describes	Describes	Explains	Explains	Discusses	Discusses
OR response	idea at the	ideas at the	THREE ideas at	FOUR ideas at	TWO points	THREE	ONE point at	BOTH points
does not relate	Achievement	Achievement	the	the	at Merit level	points at Merit	Excellence	at Excellence
to the question	level.	level.	Achievement	Achievement		level	level	level
			level.	level.				

Question	Expected coverage		Achievement	A	chievement with Merit	Achievement with Excellence
TWO (a)	Bonds broken: C-H Br-Br Bonds formed: C-Br H-Br	•	Three correct			
(b)	In solid water, the water molecules are bonded to each other in the solid structure by intermolecular bonds. If the solid water is to change into gaseous water, in sublimation, then these intermolecular bonds must be broken. Bond breaking is an endothermic process; energy is needed to break bonds. This reaction is therefore endothermic.	•	Recognises energy is need for sublimation	•	Recognises bonds are broken in sublimation	• Full explanation
(c)	$\Delta_{\rm r} {\rm H} = 175 - 450 = -275 {\rm kJmol}^{-1}$	•	Correct answer			
(d)	Energy change = $275 \times 3.47 = 954 \text{kJ}$	•	Correct answer			
(e)	Since this is an exothermic reaction, indicated by the negative value of ΔH , then the energy is released.	•	Energy is released	•	Correct answer with units	
(f)	$n(C_3H_8) = 110/44 = 2.5 mol$ Energy released = 5537kJ Energy released when 1 mole of propane burns = 5537/2.5 = 2215kJ $\Delta_r H = -2215 J j mol^{-1}$	•	Moles correctly calculated	•	Energy released calculated correctly	• Correct answer with units

NO	N1	N2	A3	A4	M5	M6	E7	E8
No response	Describes ONE	Describe TWO	Describes	Describes	Explains	Explains	Discusses	Discusses
OR response	idea at the	ideas at the	THREE ideas at	FOUR ideas at	TWO points	THREE	ONE point at	BOTH points
does not relate	Achievement	Achievement	the	the	at Merit level	points at Merit	Excellence	at Excellence
to the question	level.	level.	Achievement	Achievement		level	level	level
-			level.	level.				

Question	Expect	ed coverage	Achievement	Achievement with Merit	Achievement with Excellence	
THREE (a)	ParticlesMoleculesAtomsIonsAtoms	BondsIntermolecular forcesCovalent bondsIonic bondsCovalent bonds	• Two pairs of particles/bonds correct.	• All correct		
(b)	electrons. These electron to flow even in solid lea Lead bromide solid is n negative ions held toget are no free electrons an move. However if the l	er by a 'sea' of delocalised ons allow an electric current ad. nade up of positive and ther by ionic bonds. There d the ions are not free to lead bromide is melted, the nd an electric current can	 Mentions 'delocalised' electrons in lead structure. Identifies lead bromide as an ionic compound. Identifies ions as current carriers in molten lead bromide. 	 Correct explanation for solid lead conductivity Correct explanation for conductivity of molten lead bromide 	• Full explanation for why lead conducts and lead bromide only conducts when melted	

(c)	Sodium chloride is an ionic solid consisting of positive sodium ions and negative chloride ions held together by strong ionic bonds extending through the whole crystal. In order to melt sodium chloride these strong ionic bonds must be broken. This involves a large amount of energy. This gives sodium chloride its very high melting point. Hydrogen chloride is made up of covalent molecules held together by relatively weak intermolecular forces. To melt solid hydrogen chloride only the weak intermolecular forces have to be broken. This requires only a small amount of energy. This gives hydrogen chloride a very low melting point.	 States that sodium chloride is ionic States that hydrogen chloride is made up of molecules 	 Correct explanation of high melting point of sodium chloride Correct explanation of low melting point of hydrogen chloride. 	• Comparison of sodium chloride structure and high melting point and hydrogen chloride structure and low melting point
-----	---	---	--	--

NO	N1	N2	A3	A4	M5	M6	E7	E8
No response	Describes ONE	Describe TWO	Describes	Describes	Explains	Explains	Discusses	Discusses
OR response	idea at the	ideas at the	THREE ideas at	FOUR ideas at	THREE	FOUR points	ONE point at	BOTH points
does not relate	Achievement	Achievement	the	the	points at Merit	at Merit level	Excellence	at Excellence
to the question	level.	level.	Achievement	Achievement	level		level	level
_			level.	level.				

Judgment statement

	Not Achieved	Achieved	Merit	Excellence
Score range	0-8	9-14	15-19	20-24