Assessment schedule 2009 for AS 90696 Chemistry 3.3- Describe oxidation - reduction processes

Question number	Evidence	Achievement	Merit	Excellence
One (a)	$\begin{aligned} & \text { Reductant: } \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \\ & \text {Oxidant: } \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	Two of three equations correct		
One (b)	$2 \mathrm{OCl}^{-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$			
One (c)	The chlorine has been both oxidised and reduced. In one reaction the oxidation state of chlorine goes both up and down, from 0 to -1 in HCl and from 0 to +1 in HOCl .	Identifies that Cl_{2} is both oxidised and reduced.	Links the 3 oxidation numbers of Cl to the species.	
One (d)	Mn is reduced from +7 down to $+4 . \mathrm{MnO}_{4}{ }^{-}$is the oxidant. C is oxidised from -2 up to $+2 . \mathrm{CH}_{3} \mathrm{OH}$ is the reductant.	Has determined the change in oxidation states for both reactants.	Has linked the change in oxidation state to a redox process for both pairs.	Has clearly justified which is the oxidant and reductant.
One (e)(i)	The brown coin would react with the acid and gradually disappear. The colourless acid solution would gradually turn blue/green. This is due to the formation of Cu^{2+} (when Cu is oxidised). A brown / pungent brown gas would be evolved / given off. This is due to NO_{2} (that is formed when $\mathrm{NO}_{3}{ }^{-}$is reduced).	Has given two observations or one observation linked to a species.	Has given two linked observations.	Has linked the observations and stated the reduction/oxidation that occurred.
One (e)(ii)	$\begin{aligned} & \mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \\ & 2 \mathrm{NO}_{3^{-}}+4 \mathrm{H}^{+}+\mathrm{Cu} \rightarrow 2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cu}^{2+} \end{aligned}$	Two equations correct.	All three equations correct.	
Two (a)	E^{0} cell $=\mathrm{E}_{\text {reduction }}-\mathrm{E}_{\text {oxidation }}=+1.51-(-0.45)=+1.96 \mathrm{~V}$	Correct numerical answer	With correct sign, unit and working	
Two (b)	The pale green colour of the solution of Fe^{2+} will strengthen. The purple colour of $\mathrm{MnO}_{4} / / \mathrm{Mn}^{2+}$ mixture will get paler.	Both correct		
Two (c)	(i) platinum (ii) Iron (iii) from Iron / anode to platinum / cathode (iv) towards the anode half cell / towards the $\mathrm{Fe}^{2+} / \mathrm{Fe}$ half cell	Three of these correct		

Two (d)	The voltage of -0.31 V suggests that the reaction is not spontaneous in that direction. However, if the voltmeter was reversed the spontaneous voltage of +0.31 V would be gained. This means that the Fe is no longer undergoing oxidation, but that the Fe^{2+} is reducing to Fe , and that it is the Zn that is instead oxidising to Zn^{2+}. $\mathrm{Zn}_{(\mathrm{s})} / \mathrm{Zn}^{2+}{ }_{(\mathrm{aq})} / / \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} / \mathrm{Fe}_{(\mathrm{s})}$	Reverse the voltmeter or reverse the value or gives the diagram.	Explains that now Fe^{2+} is reducing. And includes the diagram.	
Two (e)(i)	$---(1) \times 5$ and $---(2) \times 2$ \{Not $5 \mathrm{Fe}^{\rightarrow} \rightarrow 5 \mathrm{Fe}^{2+}+10 \mathrm{e}^{-}$ \{required $2 \mathrm{MnO}_{4}+16 \mathrm{H}^{+}+10 \mathrm{e}^{-} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$ \{to be shown $\mathbf{2 M n O} \mathbf{M}^{-}+\mathbf{1 6} \mathbf{H}^{+}+\mathbf{5 F e} \rightarrow \mathbf{2 M n}^{\mathbf{2}}+\mathbf{8} \mathbf{H}_{\mathbf{2}} \mathbf{O}+\mathbf{5} \mathbf{F e}^{\mathbf{2 +}}$	Correct equation given.		
Two (e)(ii)	$\begin{aligned} & \mathrm{n}=\mathrm{cV}=0.0300 \mathrm{molL}^{-1} \times 0.050 \mathrm{~L}=0.00150 \mathrm{~mol}^{-1} \mathrm{MnO}_{4}^{-} . \\ & 0.0015 \mathrm{~mol} \times(5 / 2)=0.00375 \mathrm{~mol} \mathrm{of}^{-} \mathrm{Fe} . \\ & \mathrm{m}=\mathrm{nM}=0.00375 \mathrm{~mol} \times 55.8 \mathrm{gmol}^{-1}=0.209 \mathrm{~g} \end{aligned}$	Calculation of amount of substance (mol) of $\mathrm{MnO}_{4}{ }^{-}$.	Calculation steps applied using Two(e)(i)'s mole ratio. One error in calculation.	Correct answer including units correct to 3sig.figs (using student's own Two(e)(i) mole ratio)
Two (f)	$\begin{aligned} & \mathrm{E}^{0} \text { cell }=\mathrm{E}_{\text {reduction }}-\mathrm{E}_{\text {oxidation }}=+1.51-\left(\mathrm{Sn}^{2+} / \mathrm{Sn}\right)=+1.65 \mathrm{~V} \\ & \mathrm{Sn}^{2+} / \mathrm{Sn}=-0.14 \mathrm{~V} \end{aligned}$	Correct numerical answer	With correct unit and working	
Three	Only Cl_{2} reduces spontaneously against Ag , so best oxidiser. Ag^{+}is the next best oxidiser, because all other reactions have Ag^{+} undergoing reduction. Least positive voltage difference is with Fe^{2+}, so Fe^{3+} is the third best oxidiser, then Sn^{4+}, then H^{+}. The $\mathrm{H}^{+} / \mathrm{H}_{2}$ must be 0.00 V , and $\mathrm{Ag}^{+} / \mathrm{Ag}$ must therefore be +0.80 V . $\mathrm{Cl}_{2} / \mathrm{Cl}^{-}$is +0.56 V higher than +0.80 V , so +1.36 V . $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ is 0.03 V below +0.80 V , so +0.77 V $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ is 0.65 V below +0.80 V , so +0.15 V	Three half cells placed in the correct order relative to other. OR Three E^{0} cell values correct for any right or wrongly placed half cell.	Three half cells placed in the correct order relative to each other AND Any three E^{0} cell values correct for any right or wrongly placed half cell. AND Some valid explanation presented.	The whole table correct for both columns. AND Valid justification for the order and determined E^{0} half cell values, based upon the E^{0} cell values given.

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
EIGHT questions answered correctly.	NINE questions answered correctly including at least FIVE at Merit level.	TEN questions answered correctly including at least TWO at Excellence level and FIVE at Merit level.
Minimum of $8 \times$ A	Minimum of $5 \times \mathrm{M}+4 \times \mathrm{A}$	

