Assessment schedule 2009 for AS 90696 Chemistry 3.3- Describe oxidation – reduction processes

Question	Evidence	Achievement	Merit	Excellence
number				
One	Reductant: $H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-$			
(a)	Oxidant: $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	Two of three		
One	$2OCl^{-} + 4H^{+} + 2e^{-} \rightarrow Cl_{2} + 2H_{2}O$	equations correct		
(b)				
One	The chlorine has been both oxidised and reduced.	Identifies that Cl ₂	Links the 3	
(c)	In one reaction the oxidation state of chlorine goes both up and down,	is both oxidised	oxidation numbers	
	from 0 to -1 in HCl and from 0 to +1 in HOCl.	and reduced.	of Cl to the	
		and reduced.	species.	
One	Mn is reduced from +7 down to +4. MnO_4^- is the oxidant.	Has determined the	Has linked the	Has clearly
(d)		change in	change in	justified which is
	C is oxidised from -2 up to +2. CH_3OH is the reductant.	oxidation states for	oxidation state to a	the oxidant and
		both reactants.	redox process for	reductant.
			both pairs.	TT 1' 1 1 1
One	The brown coin would react with the acid and gradually disappear.	Has given two	II	Has linked the
(e)(i)	The colourless acid solution would gradually turn blue/green. This is due to the formation of Cu ²⁺ (when Cu is oxidised).	observations	Has given two linked	observations and stated the
	A brown / pungent brown gas would be evolved / given off. This is	or one observation	observations.	reduction/oxidation
	due to NO_2 (that is formed when NO_3 is reduced).	linked to a species.	observations.	that occurred.
One	$NO_3^- + 2H^+ + e^- \rightarrow NO_2^- + H_2O$			that occurred.
(e)(ii)	$Cu \rightarrow Cu^{2+} + 2e^{-}$	Two equations	All three equations	
(C)(II)	$2NO_{3^{-}} + 4H^{+} + Cu \rightarrow 2NO_{2} + 2H_{2}O + Cu^{2+}$	correct.	correct.	
Two	E^{0} cell = $E_{\text{reduction}} - E_{\text{oxidation}} = +1.51 - (-0.45) = +1.96V$	Correct numerical	With correct sign,	
(a)	Doxidation = 11.31 (0.13) = 11.50 v	answer	unit and working	
Two	The pale green colour of the solution of Fe ²⁺ will strengthen.		7.2	
(b)	The purple colour of MnO ₄ -/Mn ²⁺ mixture will get paler .	Both correct		
Two	(i) platinum			
(c)	(ii) Iron	Three of these		
	(iii) from Iron / anode to platinum / cathode	correct		
	(iv) towards the anode half cell / towards the Fe ²⁺ /Fe half cell			

Two (d)	The voltage of -0.31V suggests that the reaction is not spontaneous in that direction. However, if the voltmeter was reversed the spontaneous voltage of +0.31V would be gained. This means that the Fe is no longer undergoing oxidation, but that the Fe ²⁺ is reducing to Fe, and that it is the Zn that is instead oxidising to Zn^{2+} . $Zn_{(s)}/Zn^{2+}_{(aq)}//Fe^{2+}_{(aq)}/Fe_{(s)}$	Reverse the voltmeter or	Explains that now Fe ²⁺ is reducing. And includes the diagram.	
Two (e)(i)	(1) x 5 and(2) x 2 {Not $5\text{Fe} \rightarrow 5\text{Fe}^{2+} + 10\text{e}^{-}$ {required $2\text{MnO}_4^- + 16\text{H}^+ + 10\text{e}^{-} \rightarrow 2\text{Mn}^{2+} + 8\text{H}_2\text{O}$ {to be shown $2\text{MnO}_4^- + 16\text{H}^+ + 5\text{Fe} \rightarrow 2\text{Mn}^{2+} + 8\text{H}_2\text{O} + 5\text{Fe}^{2+}$	Correct equation given.		
Two (e)(ii)	$\begin{array}{l} n = cV = 0.0300 mol L^{-1} \ x \ 0.050 L = 0.00150 mol \ of \ MnO_4^{-}. \\ 0.0015 mol \ x \ (^{5}/_{2}) = 0.00375 mol \ of \ Fe. \\ m = nM = 0.00375 mol \ x \ 55.8 gmol^{-1} = 0.209 g \end{array}$	Calculation of amount of substance (mol) of MnO ₄ .	Calculation steps applied using Two(e)(i)'s mole ratio. One error in calculation.	Correct answer including units correct to 3sig.figs (using student's own Two(e)(i) mole ratio)
Two (f)	E^{0} cell = $E_{reduction} - E_{oxidation} = +1.51 - (Sn^{2+}/Sn) = +1.65V$ $Sn^{2+}/Sn = -0.14V$	Correct numerical answer	With correct unit and working	
Three	Only Cl_2 reduces spontaneously against Ag , so best oxidiser. Ag^+ is the next best oxidiser, because all other reactions have Ag^+ undergoing reduction. Least positive voltage difference is with Fe^{2+} , so Fe^{3+} is the third best oxidiser, then Sn^{4+} , then H^+ . The H^+/H_2 must be 0.00V, and Ag^+/Ag must therefore be +0.80V. Cl_2/Cl^- is +0.56V higher than +0.80V, so +1.36V. Fe^{3+}/Fe^{2+} is 0.03V below +0.80V, so +0.77V Sn^{4+}/Sn^{2+} is 0.65V below +0.80V, so +0.15V $Oxidised$ form / reduced form $Oxidised$ form / $Oxidis$	Three half cells placed in the correct order relative to other. OR Three E ⁰ cell values correct for any right or wrongly placed half cell.	Three half cells placed in the correct order relative to each other AND Any three E ⁰ cell values correct for any right or wrongly placed half cell. AND Some valid explanation presented.	The whole table correct for both columns. AND Valid justification for the order and determined E ⁰ half cell values, based upon the E ⁰ cell values given.

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
EIGHT questions answered correctly.	NINE questions answered correctly including at least FIVE at Merit level.	TEN questions answered correctly including at least TWO at Excellence level and FIVE at Merit level.
Minimum of 8 x A	Minimum of $5 \times M + 4 \times A$	Minimum of $2 \times E + 5 \times M + 3 \times A$