NZIC 2008

CHEMISTRY - 2.7

(Describe oxidation-reduction reactions)
ASSESSMENT SCHEDULE
While the writers of this assessment have worked to compile a resource that meets NCEA requirements, it has no official status and teachers may wish to adjust questions and the assessment schedule as they see fit.
Note: Oxidation equations can be written with the electrons on the right side of the equation.

	Evidence	Achievement	Merit	Excellence
One (a)	O.N in reactant ON in product Reaction (i) +3 +4 oxidation (ii) +3 +5 oxidation (iii) +5 0 reduction	Four out of six oxidation numbers correct.	All correct	
One (c)	Only C and E circled. Only in the reactions chosen do the oxidation numbers of the atoms involved change during the reaction.	Correct reactions chosen but explanation incorrect	Both reactions and explanation correct.	
Two (a)	Oxidation: $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}$ Reduction: $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ Overall: $5 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{MnO}_{4}^{-} \rightarrow 5 \mathrm{SO}_{4}^{2-}+2 \mathrm{Mn}^{2+}+4 \mathrm{H}^{+}$	Both half equations correct but overall equation incorrectly balanced and identification of oxidation and reduction reactions incorrect.	Both half equations correct but either identification as oxidation or reduction reactions incorrect or overall equation incorrectly balanced	Half equations correct and correctly identified and overall equation correctly balanced (including cancellation)
Two (b)	The purple acidified KMnO_{4} solution is reduced to pale pink/colourless Mn^{2+}.	Colour change correct	Correct identification of colour of both species	

	Evidence	Achievement	Merit	Excellence
Two (c)	$\text { Either } \mathrm{HSO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}^{+}+2 \mathrm{e}$ or $5 \mathrm{HSO}_{3}^{-}+2 \mathrm{MnO}_{4}^{-}+\mathrm{H}^{+} \rightarrow 5 \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{Mn}^{2+}+3 \mathrm{H}_{2} \mathrm{O}$ In both equations same number of MnO_{4}^{-}ions react because oxidation of both SO_{2} and HSO_{3}^{-}produces 2 electrons. The oxidation number of S in both SO_{2} and $\mathrm{HSO}_{3}{ }^{-}$is +4 .	Supplies either correct equation or gives one reason why number of MnO_{4}^{-}ions is the same	Supplies either correct equation and gives one reason why number of MnO_{4}^{-}ions is the same	Either correct equation plus both points made.
Three (a)	(i) Products are hydrogen gas/ $\mathrm{H}_{2(\mathrm{~g})}$ and solution of zinc sulfate/ ZnSO_{4} (ii) The hydrogen ion $\mathrm{H}^{+\mathrm{i}}$ s the oxidant and it is reduced to hydrogen gas $\left(\mathrm{H}_{2}\right)$	Both products correct OR Oxidant and product correctly identified.	Both products correct AND Oxidant and product correctly identified	
(b)	(i) Products are (aqueous) bromine/ Br_{2} and potassium chloride / KCl (ii) Chlorine gas is the oxidant and it is reduced to chloride ions	Both products correct OR Oxidant and product correctly identified.	Both products correct AND Oxidant and product correctly identified	
Four (a)	Oxidation	Correct		
Four (b)	- The anode reaction is $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}$, so the two electrons produced pass to the cathode while the Cu^{2+} ions are released into the solution. - At the cathode each Cu^{2+} ion reacts with two electrons to be reduced to solid copper which plates out on the saucepan. $\mathrm{Cu}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Cu}(\mathrm{~s})$ - The Cu electrode gradually loses mass as the copper builds up on the saucepan, but the colour of the Cu^{2+} solution does not change as the ions are constantly replaced by the anode reaction.	Equation of one reaction correct even if electrodes incorrectly identified in part (a).	Equations of both reactions correct but part (a) must be correct	Merit plus observations correct.

| | Evidence | Achievement | Merit |
| :---: | :--- | :--- | :--- | :--- |
| Five
 (a) | $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ | Correct | Excellence |
| (b) | (i)Pale green colour of solution of Fe^{2+} would turn
 orange due to formation of $\mathrm{Fe}^{3+} .($ Peroxide and
 water are both colourless)
 (ii)Colourless solution of I^{-}would turn dark brown due
 to formation of I_{2}Both species correct
 OR
 Both colour changes
 correct
 OR
 One species and its colour
 change correct | Colour and identification of
 reactant and product of both
 reactions correct | |
| (c) | In (a) hydrogen peroxide is acting as an oxidising agent
 while in this reaction (c) it is acting as a reducing agent
 $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}$ | Correct explanation or
 equation | Both explanation and equation
 correct. |

12 Achieved opportunities
10 Merit opportunities
3 Excellence opportunities

Sufficiency Statement:

Achieved A total of SIX opportunities correct at the Achieved level or higher
Merit A total of EIGHT opportunities correct; 4 at the Merit level or higher and 4 at the Achieved level or higher.
Excellence A total of TEN opportunities correct; 2 at the Excellence level, 4 at the Merit level or higher and 4 at the Achieved level or higher.

