Assessment Schedule – NZIC 2009 Chemistry: Describe oxidation-reduction reactions (90311)

Е

Q	Evidence			Achievement		Achievement with Merit	Achievement with Excellence
One Dont A		Oxidation Number of		Three (3) out of five (5)	Thr	ree(3) out five(5)	All oxidation numbers correct
(a)		Mn		• 3 out 4 oxidation numbers correct	•	All oxidation numbers correct	concer
(a)	K <u>Mn</u> O ₄	+7 or 7					
	$\underline{Mn}Cl_2$	+2 or 2					AND
	$\underline{Mn}O_2$	+4 or 4					
	$K_2 Mn O_4$	+6 or 6					
(b)	$MnO_2 + 4HCl -$	\rightarrow MnCl ₂ + Cl ₂ + H ₂ O					
	ON of Mn changes from +4 to +2 so has gained 2 electrons, reduction.ON of Cl changes from -1 to 0 so has lost 1 electron - oxidation		ns,	• One set of ON correctly identifies the oxidation - reduction reaction.	•]	• Explanation of oxidation – reduction in terms of ON in both equations	• Explanation of oxidation – reduction in terms of ON in both equations
	$2\text{AlCl}_3 + 3\text{Mn} \rightarrow 2\text{Al} + 3\text{MnCl}_2$						
	ON of Al change reduction	es from +3 to 0 so has gained 3 electron	, —				
	ON of Mn changes from +4 to +2 so has lost 2 electrons – oxidation		-				AND
(c)	$\begin{array}{l} Fe^{2+} \rightarrow Fe^{3+} + e^{-} (oxidation) \\ MnO_{4}^{-} + 8H^{+} + 5e^{-} \rightarrow Mn^{2+} + 4H_{2}O \mbox{ (reduction)} \\ MnO_{4}^{-} + 5Fe^{2+} + 8H^{+} \rightarrow Mn^{2+} + 5 \mbox{ Fe}^{3+} + 4H_{2}O \mbox{ (overall)} \\ Purple MnO_{4}^{-} \mbox{ solution goes yellow / orange (NOT brown)} \\ because of formation of Fe^{3+} OR \mbox{ goes colourless (NOT clear)} \\ because of formation of Mn^{2+}. \\ OR \\ MnO_{4}^{-} \mbox{ is purple and forms colourless } Mn^{2+}, \mbox{ while colourless/pale green } Fe^{2+} \mbox{ forms } Fe^{3+} \mbox{ which is yellow / orange.} \\ MnO_{4}^{-} \mbox{ is the reductant and } Fe^{2+} \mbox{ is the oxidant. The oxidant } Fe^{2+} \mbox{ changes to } Fe^{3+} \mbox{ transferring the electron to } MnO_{4}^{-}. \mbox{ Five } Fe^{2+} \mbox{ are required to transfer an electron to } MnO_{4}^{-} \mbox{ to change it to } Mn^{2+}. \end{array}$		n) ant Five nge	 Observations correct (ie purple solution to colourless / yellow / orange). Oxidant and reductant correctly identified. Half-equations correctly balanced.(Ignore spectator ions if balanced.). 		Overall equation correct Observations correct (ie purple solution to c'less / yellow / orange) and linked to species. Correctly recognises oxidant and reductant and the transfer of electrons.	• Complete discussion and role of oxidant and reductant and the number of transferred electrons.

Two	A When Cl_2 is bubbled through the NaBr solution the reddish-brown colour is due to the formation of Br_2 . Cl_2 the oxidant and Br^- is the reductant. The reactions between halogens are a redox reaction as there is a transfer of electrons eg $Cl_2 + 2e \rightarrow 2Cl^-$ reduction $2Br^- \rightarrow Br_2 + 2e$ oxidation Electrons are transferred between chlorine and bromide B When Cl_2 is bubbled through the NaI solution the reddish- brown colour is due to the formation of $I_2.(or I_3^-)$ Cl_2 the oxidant and I^- is the reductant. $Cl_2 + 2e \rightarrow 2Cl^-$ reduction $2I^- \rightarrow I_2 + 2e$ oxidation .Electrons are transferred between chlorine and iodide C No reaction as F_2 does not react with Cl_2 as F_2 is a stronger oxidant than Cl_2 .	 Two (2) out four (4) Balanced equation for either A or B. One observation linked to species. Identifies oxidation and reduction for one reaction. Recognises that a transfer of electrons has taken place. 	 Three (3) out (4). Balanced equations for A and B. Links observations A and B. Identifies oxidation - reduction in A and B. 	 Links ALL observations to species involved (A, B and C). Identifies oxidant and reductant A and B. Balanced equations. Justifies oxidation and reduction in terms of electron transfer.
Three (a) (b)	Positive Electrode• Anode• Chloride ions (anions) move to the anode (+ve electrode)• $2Cl^- \rightarrow Cl_2 + 2e^-$ Negative Electrode• Cathode• Lithium ions (cations) move to the cathode (-ve electr).• Li ⁺ + e ⁻ \rightarrow LiElectrolytic Cell ACathode reaction $Cu^{2+} 2e \rightarrow Cu$ • Anode reaction $2Cl^- \rightarrow Cl_2 + 2e^-$ In this reaction bubbles would be seen to form on thenegative /anode electrode and a red brown deposit of copperwould form on the positive /cathode. As the reactionproceeds the colour (green/blue-green) of the copperchloride solution would fade.	 Three (3) out five (5) Labels correct Electron flow correct for labels (follow on). Electrodes correct. One equation correct. Observed change in either cell 	 Two (2) out three (3). All correct One cell reaction correct with observations linked to species. OR One observation in each cell correct linked to electrode reaction. 	Discussion of observed changes with supporting equations and links to electron transfer.

Electrolytic Cell B		
Cathode reaction $Cu^{2+} 2e \rightarrow Cu$		
Anode reaction $Cu \rightarrow Cu^{2+} 2e$		
The key would become coated in a red-brown deposit of copper and the copper electrode would reduce in size. The solution would not change in colour.		

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Two correct at Achieved or higher.	Three correct at Achieved with two at Merit	Three correct at Achieved with one at Merit and one at
		Excellence.
2 x A	3A x 2M	3A x 1M x 1E