h Merit Excellence
rect
of
from Correct movement of
anions and cations from
salt bridge
of
lanation AND
Correct discussion of
all points, including half equations
ns of
de,
species

Assessment Schedule 3.3 – NZIC 2011 Chemistry: Describe oxidation-reduction processes (AS 90696)

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
TWO		Two out of three:	Two of:	
(a) (i)	Oxidation: $2H_2O + SO_2 \rightarrow SO_4^{2-} + 4H^+ + 2e^-$ Reduction: $5e^- + 8H^+ + MnO_4^- \rightarrow Mn^{2+} + 4H_2O$ Overall: $2H_2O + 5SO_2 + 2MnO_4^- \rightarrow 5SO_4^{2-} + 4H^+ + Mn^{2+}$	Both half equations correctly balanced	Correct overall equation	
(ii)	In strongly basic conditions: $E^{\circ}_{cell} = E^{\circ}_{RHS} - E^{\circ}_{LHS}$ $E^{\circ}(SO_4^{2-}/SO_2) = E^{\circ}_{RHS} - E^{\circ}_{cell} = +0.56 - (+0.11) = +0.45 \text{ V}$	Correct process for calculating $E^{\circ}(SO_4^{2^-}/SO_2)$ value, but may have used wrong permanganate half cell	Correct $E^{\circ}(SO_4^{2-}/SO_2)$ value	
(b) (i) (ii)	$E^{\circ}(NO_{3}^{-}/NO_{2}) > E^{\circ}(Fe^{3+}/Fe^{2+}) > E^{\circ}(Cu^{2+}/Cu)$ NO ₃ ⁻ can oxidise both Cu and Fe ²⁺ , so $E^{\circ}(NO_{3}^{-}/NO_{2})$ will be greater than both $E^{\circ}(Fe^{3+}/Fe^{2+})$ and $E^{\circ}(Cu^{2+}/Cu)$. Cu ²⁺ cannot oxidise Fe ²⁺ , so $E^{\circ}(Fe^{3+}/Fe^{2+})$ will be greater than $E^{\circ}(Cu^{2+}/Cu)$. NO ₃ ⁻ can oxidise both Cu and Fe ²⁺ , so it is the strongest oxidant.	EITHER strongest oxidant recognised with incomplete explanation OR correct sequence with incomplete explanation	Correct sequence and strongest oxidant identified but incomplete explanation	Correct sequence and strongest oxidant identified with full explanation

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
THREE		Three out of:	Two out of:	
(a) (i)	Reaction 1: Reduction occurs at the cathode	Reaction 1 circled with reason		
(ii)	$Zn Zn^{2+} MnO_2, Mn_2O_3 C$ in place of , OK	Correct cell diagram		
(b) (i)	The oxidation number of the Cu in Cu_2O decreases from +1 to 0 in Cu, so Cu_2O is reduced. However, the oxidation number of the Cu in Cu_2O increases from +1 to +2 in $CuSO_4$, so Cu_2O is also oxidised.	Correctly assigns oxidation numbers to Cu species in reactants and products	Explains redox reaction using correct oxidation numbers	Explains redox reaction using correct oxidation numbers
(ii)	Copper (I) ions can reduce and oxidise each other in solution according to the following balanced equation: $2Cu^+ \rightarrow Cu + Cu^{2+}$	Correct half equations OR Balanced equation	Recognises disproportionation reaction occurring in solution	AND
	OR: $Cu^+ + e^- \rightarrow Cu$ $Cu^+ \rightarrow Cu^{2+} + e^-$ The cell potential for this reaction is: $E^{\circ}_{cell} = E^{\circ}_{RHS} - E^{\circ}_{LHS} = +0.52 - (+0.16) = +0.36 \text{ V}$ Since the E°_{cell} is positive, the reaction will be spontaneous, so copper (I) ions cannot exist in solution.	Correct E°_{cell} value	Calculates E°_{cell} and relates this to spontaneity of reaction	Full explanation of why copper (I) ions cannot exist in solution including balanced equation

Judgement Statement

Achieved	Merit	Excellence
Total of TWO opportunities answered at	Total of THREE opportunities answered with	Total of THREE opportunities answered with
Achievement level or higher.	TWO at Merit level or higher.	TWO at Excellence level or higher.
2 x A	2 x M	2 x E