CHEM 3.6

Standard 91392 Demonstrate understanding of equilibrium principles in aqueous systems

This standard can be divided into two parts

- 1. Equilibrium and reaction quotient
 - a. Solubility of ionic compounds in aqueous system
 - i. Saturated solution, ionic products, K_s and calculation
 - ii. Common ion effects, formation of complex ions and pH in solubility system
- 2. Acids and bases
 - a. K_{w} , K_{a} and K_{b}
 - b. Weak acid and weak base calculation
 - c. Species in solution
 - d. Buffer solutions concept and calculation
 - e. Titration curve concept and calculation

Please read this document

Useful equations (equations will not be provided in the examination)

 $n = c v \quad m = n \times M$

Solubility of ionic compounds

• For AB ionic salts

$$K_s = [A^+][B^-] \quad s = \sqrt{K_s}$$

• For A_2B ionic salts

$$K_s = [A^+]^2 [B^{2-}] \ s = \sqrt[3]{\frac{K_s}{4}}$$

Acid and bases

$$K_{w} = [H_{3}O^{+}] [OH^{-}] \qquad K_{w} = 10^{-14} \qquad K_{w} = K_{a} K_{b}$$
$$-log[K_{a}] = pK_{a} \qquad 10^{-pK_{a}} = K_{a} \qquad 14 - pK_{a} = pK_{b} \qquad 10^{-pK_{b}}$$
$$-K$$

$$= K_b$$
$$-log[H_3O^+] = pH$$

$$10^{-pH} = [H_3O^+]$$

For weak acid calculation

- $HA(aq) + H_2O(l) = H_3O^+(aq) + A^-(aq)$ Assumptions
 - Since K_a is small, therefore c HA = [HA]
 - Since K_w is small, therefore $[H_3O^+] = [A^-]$

$$[H_3O^+] = \sqrt{K_a \times cHA}$$

For weak acid calculation

- B(aq) + H₂O(l) ≑ OH⁻(aq) + HB⁺(aq) Assumptions
 - Since K_b is small, therefore the origin concentration c B = [B]
 - Since K_w is small, therefore the [OH⁻] = [HB⁺]

$$[OH^-] = \sqrt{K_b \times cB}$$

Equilibrium and solubility

This part of the standard focuses on the equilibrium system of saturated ionic solutions.

- 1. Equilibrium constant and reaction quotient
- 2. Solubility of ionic compounds in aqueous system
 - a. Saturated solution, ionic products, K_s and calculations
 - b. Common ion effects, formation of complex ions and pH in solubility system

Equilibrium constant and reaction quotient

- Equilibrium constant (K) is the concentration ratio of species when the system is at equilibrium.
- Reaction quotient (Q) is the concentration ratio of species in any given moment.
- When $Q \neq K$, changes will be made until Q = K.
- In a closed system, for a reversible reaction, only three possible situations.
 - System at equilibrium (Q = K)
 - Forward reaction toward the equilibrium (Q < K)
 - Reverse reaction toward the equilibrium (Q > K)

Solubility of ionic compounds in aqueous system

- When an ionic solution is oversaturated, the solution is in an equilibrium system between the left over solids and the dissolved ions.
- This equilibrium constant is called solubility constant (K_s)
- For AB ionic salts
 - $AB(s) \neq A^+(aq) + B^-(aq)$

For A_2B ionic salts $\circ A_2B(s) = 2A^+(aq) + B^-(aq)$

 \circ $K_{s} = [A^{+}]^{2}[B^{2-}]$

 $\circ \qquad K_s = [A^+][B^-]$

Saturated solution, ionic products, K_s and calculations

- The Q_s of solubility system is also called *ionic products (IP)*
 - When the $IP > K_s$, the solution is oversaturated and precipitate will be formed.
- Solubility (s) is the maximum concentration of the substance at particular temperature.
 - For AB salt
 - $AB(s) \Rightarrow A^+(aq) + B^-(aq)$
 - Since the ratio of AB : A^+ : B^- is 1:1:1, therefore $[A^+] = [B^-] = s$
 - $K_s = [A^+][B^-] = s^2$
 - Therefore the relationship between K_s and solubility for AB salt would be

$$s = \sqrt{Ks}$$

- For A_2B salt
 - The [A⁺] is twice the amount of [B²⁻]
 - $\blacksquare A_2B(s) \stackrel{\scriptscriptstyle <}{\scriptscriptstyle =} 2A^+(aq) + B^-(aq)$
 - Since the ratio between $A_2B : A^+ : B^{2-}$ is 2:1:1, therefore $2[A^+] = [B^{2-}] = s$
 - $K_s = [A^+]^2 [B^{2-}] = (2s)^2 s = 4s^3$
 - Therefore the relationship between K_s and solubility for A_2B salt would be

$$K_s = [A^+]^2 [B^{2-}] \ s = \sqrt[3]{\frac{K_s}{4}}$$

Common ion effects, formation of complex ions and pH in solubility system

- When a solution contains an ion that is common to the saturated solution, the solubility decreases.
- This is called the common ion effects.

• For example

40.0 mL of 0.150 mol L⁻¹ HBr solution was added to 25.0 mL of a saturated silver bromide, AgBr, solution. K_s (AgBr) = 5.00 × 10⁻¹³

- $K_s = [Ag^+][Br^-]$
- Since the K_s is very small
- Therefore an assumption is made that the Br from the AgBr is insignificant.
- $[Ag^+]$ = solubility (s)
- The amount of Br⁻ would be

$$0.150 \ mol \ L^{-l} \times 0.0400 \ L = 0.00600 \ mol$$

■ The concentration of Br⁻ would be

$$[Br^{-}] = \frac{0.00600 \, mol}{(0.04 + 0.025) \, L} = 0.0923...mol \, L^{-1}$$

• Substitute the values into the K_s expression

$$5.00 \times 10^{-13} = s \times 0.923...$$

$$s = \frac{5.00 \times 10^{-13}}{0.923} = 5.42 \times 10^{-13} mol L^{-1}$$

- When complex ions is formed with one of the species, the concentration of the ion decreases, therefore the solubility increases as a result.
 - For example
 - In the reaction above, if ammonia (NH₃) is added to the system, NH₃ is going to form a complex ion with Ag⁺ forming the complex ion [Ag(NH₃)₂]⁺.
 - Complex ions from **CHEM 2.2** will be assumed.
 - Since the product is removed, therefore it dives the reaction forward and the solubility of the substance increases.
- If the ionic compound contains hydroxide, the concentration of the hydroxide can be calculated by the *pH* of the solution.
 - If *pH* decreases (by adding acid), the solubility of the substance increases
 - Similarly if the *pH* increases, the solubility of the substance decreases.

Exercise for equilibrium and solubility

- 1) Write the K_s expression and calculate the solubility of the following salts when it dissolves in water:
 - a) $BaSO_4$ $K_s = 1.1 \times 10^{-10}$
 - b) $CaCO_3$ $K_s = 3.3 \times 10^{-9}$
 - c) Ag_2CrO_4 $K_s = 2.6 \times 10^{-12}$
- 2) Calculate the K_s of the following solutions:
 a) Solubility of Pbl₂ is 0.00125 mol L⁻¹
 - b) Solubility of Ag_2SO_4 is $1.55 \times 10^{-2} \text{ molL}^{-1}$
- 3) Predict will precipitate form in the following mixtures
 - a) 200 mL of 0.0010 mol L⁻¹ of NaSO₄ is mixed with 200 mL of 0.0010 mol L⁻¹ of BaCl₂. $K_s(BaSO_4) = 1.1 \times 10^{-10}$
 - b) 30 mL of 0.100 mol L⁻¹ Pb(NO₃)₂ is mixed with 20 mL of 0.100 mol L⁻¹ of K₂CrO₄ K_s (PbCrO₄) = 2.5 × 10⁻¹³
- 4) Calculate the concentration of Fe²⁺ in a saturated solution of Fe(OH)₂ K_s (Fe(OH)₂) = 4.1 × 10⁻¹⁵
- 5) Calculate the *pH* in the saturated solution of $Fe(OH)_2$
- 6) Calculate the solubility of $Fe(OH)_2$ when the *pH* = 5

Acids and bases

This standard is continuation of CHEM 2.6 with a particular focus on the equilibrium system of weak acids and weak bases in aqueous solutions

This part of the standard can be divided into five themes

- 1. K_{w} , K_{a} and K_{b}
- 2. Weak acid and weak base calculations
- 3. Species in solution
- 4. Buffer solutions concept and calculations
- 5. Titration curve concepts and calculations
- Below is the list of common acid and common base that applies to this standard

Acid	Strength	Base	Strength
HCI	strong	NaOH	strong
HNO ₃	strong	КОН	strong
H_2SO_4	strong	Ammonia	weak
HBr	strong	Amines	weak
HF	weak	Conjugate base of weak acid eg CH ₃ COO ⁻	weak
Carboxylic acids	weak		
Conjugate acid of weak base eg NH_4^+	weak		

K_{w} , K_{a} and K_{b}

- In CHEM 2.6, the description of a weak acids or weak bases are acids and bases which partially dissociate forming an equilibrium mixture.
- Since it is an equilibrium mixture, therefore an equilibrium expression.
- For weak acid HA
 - $HA(aq) + H_2O(l) = H_3O^+(aq) + A^-$

$$K_a = \frac{[H_3 O^+][A^-]}{[HA]}$$

• For weak base B

•
$$B(aq) + H_2O(l) = OH^-(aq) + HB^+(aq)$$

$$K_b = \frac{[OH^-][HB^+]}{[B]}$$

• The relationship between K_a and K_b is¹

$$K_w = K_a K_b$$

• Similar to $[H_3O^+]$ is often expressed as *pH*, K_a is often expressed as pK_a

$$-\log[K_a] = pK_a \qquad 10^{-pK_a} = K_a$$

Weak acid and weak base calculations

- There are two assumptions involve for the calculation for *pH* of the weak acids and bases solutions
- In order to do that, the K_a or pK_a values need to be given (or able to determine)
 - Since K_a is small, therefore c HA = [HA]
 - Vice versa for weak base *c* B = [B]
 - Since K_w is small, therefore $[H_3O^+] = [A^-]$
 - Vice versa for weak base [OH⁻] = [HB⁺]
 - The equilibrium expression is

$$K_a = \frac{[H_3 O^+][A^-]}{[HA]}$$

• Applying assumption

$$K_a = \frac{\left[H_3O^+\right]^2}{cHA}$$

• Rearrange

$$[H_3O^+] = \sqrt{K_a \times cHA}$$

 \circ $\;$ This can also be applied to weak base

$$[OH^-] = \sqrt{K_b \times cB}$$

• In the examination, it is expected to show the steps (from K_a expression) and list the assumptions.

¹ See appendix for the mathematics

Species in solution

•

- The concentration of species can be compared with each other.
- The species of the highest concentration is obviously water.
 - It is a useful tools to compare and contrasts the conductivity of the solution.
 - \circ $\;$ Electrolytes means solution that contains ions which can conduct electricity.
 - \circ $\;$ The higher the concentration of ions, the higher the electroconductivity.

• For neutral salts

- 1:1 ratio (NaCl)
 - $\blacksquare Na^+ = CI^- > H_3O^+ = OH^-$
 - 1:2 ratio (such as $CaCl_2$)
 - $Cl^- > Ca^{2+} > H_3O^+ = OH^-$
- For strong acids

0

- Monoprotic acids (HCI)
 - $\blacksquare H_3O^+ = * CI^- > OH^-$
 - Diprotic acids (H₂SO₄)
 - $H_{3}O^{+} > SO_{4}^{2-} > OH^{-}$
- For weak acids

0

- $\circ~$ For molecular acids (CH_3COOH)
 - $CH_3COOH > H_3O^+ = CH_3COO^- > OH^-$
- For acidic salts (NH₄Cl)
 - $CI^{-} > NH_{4}^{+} > H_{3}O^{+} =* NH_{3} > OH^{-}$
- For weak bases
 - For molecular bases (NH_3)
 - $NH_3 > OH^- =* NH_4^+ > H_3O^+$
 - \circ For basic salts (CH₃COONa)
 - Na⁺ > CH₃COO⁻ > OH⁻ =* CH₃COOH > H₃O⁺

* Slightly higher due to water dissociation.

Buffer solutions concepts and calculations

- A buffer solution is a mixture of weak acids and weak bases.
- It can be produced by
 - mixing a weak acid solution (or salt) with a weak base solution (or salt)
 - Or neutralise partially a weak acid or a weak base solution with a strong acid or base.
- A buffer able to maintain *pH* because
 - When a small amount of H_3O^+ is added into a buffer, it will be neutralised by the weak bases
 - Similarly, when a small amount of OH⁻ is added, it will be neutralised by the weak acids.
- A buffer calculation can be easily done with the K_a expression
 - o (some of the teacher will introduce the formula

$$pH = pK_a + \log\frac{B}{A}$$

- It is mathematically the same as the K_a expression²
- \circ For example

An aqueous solution containing a mixture of HF and sodium fluoride, NaF, can act as a buffer solution. Calculate the mass of NaF that must be added to 150 mL of 0.0500 mol L⁻¹ HF to give a buffer solution with a *pH* of 4.02. Assume there is no change in volume.

$$M(NaF) = 42.0 \text{ g mol}^{-1}$$
 $pK_a(HF) = 3.17$

1. Write the K_a expression

$$K_a = \frac{[H_3 O^+][A^-]}{[HA]}$$

2. Substitute the known values

$$10^{-3.17} = \frac{10^{-4.02} [F^-]}{0.05}$$

3. Rearrange to determine [F⁻] needed in this *pH*

$$[F^{-}] = \frac{10^{-3.17} \times 0.05}{10^{-4.02}} = 0.354...mol L^{-1}$$

4. Find the amount of F⁻ needed

 $0.354...mol L^{-1} \times 0.150 L = 0.0531...mol$

- 5. Find the mass of NaF needed
- $0.0531 mol \times 42.0 g mol^{-1} = 2.23g (3s.f.)$

² See appendix for the mathematics

Titration curve concepts and calculations

- Titration curve is a graphic expression between pH and volume of standard added during a titration.
 - y-axis *pH*
 - x-axis volume in mL
- Below are the titration curves for strong acid vs strong base and strong base vs strong acid.

Figure 2.1- Titration curves (top) strong acid - strong base, (bottom) strong base - strong acid.³

- In both cases, the equivalence point pH = 7 as it contains a neutral salt.
- However for weak acid vs strong base or weak base vs strong acid, the curves will be different.

³ <u>https://www.chemguide.co.uk/physical/acidbaseegia/phcurves.html</u> accessed on 21/11/2017

volume of acid added (cm³)

Figure 2.2- Titration curves for (top) weak acid vs strong base, (bottom) weak base vs strong acid.⁴

- There are three important points for weak vs strong titration curves for *pH* calculations.
 - Initial point
 - Buffer zone
 - Equivalence point
- For weak acid vs strong base
 - \circ $\;$ The initial point is the weak acid, simple weak acid calculation
 - Buffer zone, use buffer calculations
 - The region between the initial point and equivalence point.
 - It contain both weak acid and its conjugate as it is being neutralised.
 - Note half way between equivalence point is called the half equivalence point.
 - At this point the concentration of the weak acid species is the same as its conjugate.

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$
 $K_a = [H_3O^+]$ $pK_a = pH$

- Equivalence point
 - All the weak acid is neutralised leaving a conjugate base salt solution
 - Weak base calculation
 - With the amount of acid in the initial point and the total volume both equivalence point and the initial volume.
- Vice versa for weak base vs strong acid.

⁴ <u>https://www.chemguide.co.uk/physical/acidbaseeqia/phcurves.html</u> accessed 21/11/2017

Exercises for acids and bases

- 1. Calculate the *pH* of the following solutions
 - a. 0.125 mol L⁻¹ of sodium ethanoate $K_a(CH_3COOH) = 1.74 \times 10^{-5}$ b. 0.500 mol L⁻¹ of ammonia $K_a(NH_4^+) = 5.75 \times 10^{-10}$ c. 0.00250 mol L⁻¹ propanoic acid $K_a(C_2H_5COOH) = 1.35 \times 10^{-5}$ d. 0.050 mol L⁻¹ of F⁻ $K_a(HF) = 6.76 \times 10^{-4}$
 - e. 25.0 mL of 0.500 mol L^{-1} ammonia is mixed with 30.0 mL of 0.200 mol L^{-1} of ammonium chloride.
 - f. 10.0 mL of 0.100 mol L⁻¹ propanoic acid is mixed with 15.0 mL of 0.100 mol L⁻¹ of sodium propanoate.
 - g. 10.0 mL of 0.100 mol L⁻¹ of hydrogen fluoride of is mixed with 5.00 mL of 0.125 mol L⁻¹ of sodium hydroxide.
- 2. 15.0 mL of 0.100 mol L^{-1} of ammonia is titration against 0.200 mol L^{-1} hydrochloric acid.
 - a. Calculate the volume of equivalence point
 - b. Calculate the *pH* at the initial point
 - c. Calculate the pH after 5 mL of hydrochloric acid was added
 - d. Calculate the *pH* at the equivalence point

Appendix

Reasons for

 $K_w = K_a K_b$ • Since

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} \qquad K_{b} = \frac{[OH^{-}][HA]}{[A^{-}]}$$
$$K_{a} \times K_{b} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} \times \frac{[OH^{-}][HA]}{[A^{-}]}$$

• Canceling all the species

$$\therefore [H_3O^+][OH^-] = K_w = K_a K_b$$

Reason for

$$pH = pK_a + \log\frac{B}{A}$$

- $B = [A^-] \text{ or } nA^-$
- A = [HA] or *n*HA

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

• Rearrange making $[H_3O^*]$ the subject

$$[H_3O^+] = \frac{[HA]}{K_a[A^-]}$$
• -log both side
$$-log[H_3O^+] = -log\frac{[HA]}{K_a[A^-]}$$

• Expand the log on the right hand side

$$pH = -\log K_a - \log \frac{[HA]}{[A^-]}$$
$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$